No Arabic abstract
Wood, due to its biological origin, has the capacity to interact with water. Sorption/desorption of moisture is accompanied with swelling/shrinkage and softening/hardening of its stiffness. The correct prediction of the behavior of wood components undergoing environmental loading requires that the moisture behavior and mechanical behavior of wood are considered in a coupled manner. We propose a comprehensive framework using a fully coupled poromechanical approach, where its multiscale implementation provides the capacity to take into account, directly, the exact geometry of the wood cellular structure, using computational homogenization. A hierarchical model is used to take into account the subcellular composite-like organization of the material. Such advanced modeling requires high resolution experimental data for the appropriate determination of inputs and for its validation. High-resolution x-ray tomography, digital image correlation, and neutron imaging are presented as valuable methods to provide the required information.
Yielding behavior in amorphous solids has been investigated in computer simulations employing uniform and cyclic shear deformation. Recent results characterise yielding as a discontinuous transition, with the degree of annealing of glasses being a significant parameter. Under uniform shear, discontinuous changes in stresses at yielding occur in the high annealing regime, separated from the poor annealing regime in which yielding is gradual. In cyclic shear simulations, relatively poorly annealed glasses become progressively better annealed as the yielding point is approached, with a relatively modest but clear discontinuous change at yielding. To understand better the role of annealing on yielding characteristics, we perform athermal quasistaic cyclic shear simulations of glasses prepared with a wide range of annealing in two qualitatively different systems -- a model of silica (a network glass), and an atomic binary mixture glass. Two strikingly different regimes of behavior emerge: Energies of poorly annealed samples evolve towards a unique threshold energy as the strain amplitude increases, before yielding takes place. Well annealed samples, in contrast, show no significant energy change with strain amplitude till they yield, accompanied by discontinuous energy changes that increase with the degree of annealing. Significantly, the threshold energy for both systems correspond to dynamical crossover temperatures associated with changes in the character of the energy landscape sampled by glass forming liquids. Uniform shear simulations support the recently discussed scenario of a random critical point separating ductile and brittle yielding, which our results now associate with dynamical crossover temperatures in the corresponding liquids.
The stability of organic solar cells is strongly affected by the morphology of the photoactive layers, whose separated crystalline and/or amorphous phases are kinetically quenched far from their thermodynamic equilibrium during the production process. The evolution of these structures during the lifetime of the cell remains poorly understood. In this paper, a phase-field simulation framework is proposed, handling liquid-liquid demixing and polycrystalline growth at the same time in order to investigate the evolution of crystalline immiscible binary systems. We find that initially, the nuclei trigger the spinodal decomposition, while the growing crystals quench the phase coarsening in the amorphous mixture. Conversely, the separated liquid phases guide the crystal growth along the domains of high concentration. It is also demonstrated that with a higher crystallization rate, in the final morphology, single crystals are more structured and form percolating pathways for each material with smaller lateral dimensions.
Molecular dynamics simulations of the temperature dependent crystal growth rates of the salts, NaCl and ZnS, from their melts are reported, along with those of a number of pure metals. The growth rate of NaCl and the FCC-forming metals show little evidence of activated control, while that of ZnS and Fe, a BCC forming metal, exhibit activation barriers similar to those observed for diffusion in the melt. Unlike ZnS and Fe, the interfacial inherent structures of NaCl and Cu and Ag are found to be crystalline. We calculate the median displacement between the interfacial liquid and crystalline states and show that this distance is smaller than the cage length, demonstrating that crystal growth in the fast crystallizers can occur via local vibrations and so largely avoid the activated kinetics associated with the larger displacements associated with particle transport.
The quest for efficient and economically accessible cleaner methods to develop sustainable carbon-free energy sources induced a keen interest in the production of hydrogen fuel. This can be achieved via the water-splitting process exploiting solar energy but requiring the use of adequate photocatalysts. Covalent triazine-based frameworks (CTFs) are target photocatalysts for water-splitting. Both electronic and structural characteristics of CTFs, optical bandgaps and porosity, are directly relevant for water-splitting. These can be engineered through chemical design. Porosity can be beneficial to water-splitting by providing larger surface area for the catalytic reactions. However, porosity can also affect both charge transport within the photocatalyst and mass transfer of both reactants and products, thus impacting the overall kinetics of the reaction. We focus on the link between chemical design and water (reactants) mass transfer, playing a key role in the water uptake process and the subsequent hydrogen generation. We use neutron spectroscopy to study water mass transfer in two porous CTFs, CTF-CN and CTF-2, that differ in the polarity of their struts. Quasi-elastic neutron scattering (QENS) is used to quantify the amount of bound water and the translational diffusion of water. Inelastic neutron scattering measurements complement QENS and provides insights into the softness of the CTF structures and the changes in librational degrees of freedom of water in CTFs. We show that CTF-CN exhibits smaller surface area and water uptake due to a softer structure than CTF-2. The current study leads to new insights into the structure-dynamics-property relationship of CTF photo-catalysts that pave the road for a better understanding of the guest-host interaction at the basis of water splitting applications.
The atomic displacements associated with the freezing of metals and salts are calculated by treating crystal growth as an assignment problem through the use of an optimal transport algorithm. Converting these displacements into time scales based on the dynamics of the bulk liquid, we show that we can predict the activation energy for crystal growth rates, including activation energies significantly smaller than those for atomic diffusion in the liquid. The exception to this success, pure metals that freeze into face centred cubic crystals with little to no activation energy, are discussed. The atomic displacements generated by the assignment algorithm allows us to quantify the key roles of crystal structure and liquid caging length in determining the temperature dependence of crystal growth kinetics.