Do you want to publish a course? Click here

New differential equations in the six-vertex model

111   0   0.0 ( 0 )
 Added by Wellington Galleas
 Publication date 2015
  fields Physics
and research's language is English
 Authors W. Galleas




Ask ChatGPT about the research

This letter is concerned with the analysis of the six-vertex model with domain-wall boundaries in terms of partial differential equations (PDEs). The models partition function is shown to obey a system of PDEs resembling the celebrated Knizhnik-Zamolodchikov equation. The analysis of our PDEs naturally produces a family of novel determinant representations for the models partition function.



rate research

Read More

60 - W. Galleas 2018
In this work we elaborate on a previous result relating the partition function of the six-vertex model with domain-wall boundary conditions to eigenvalues of a transfer matrix. More precisely, we express the aforementioned partition function as a determinant of a matrix with entries being eigenvalues of the anti-periodic six-vertex models transfer matrix.
131 - W. Galleas 2018
This paper is a continuation of our previous work Six-vertex model and non-linear differential equations I. Spectral problem in which we have put forward a method for studying the spectrum of the six-vertex model based on non-linear differential equations. Here we intend to elaborate on that approach and also discuss properties of the spectrum unveiled by the aforementioned differential formulation of the transfer matrixs eigenvalue problem. In particular, we intend to demonstrate how this differential approach allows one to study continuous symmetries of the transfer matrixs spectrum through the Lie groups method.
In this paper, we provide new proofs of the existence and the condensation of Bethe roots for the Bethe Ansatz equation associated with the six-vertex model with periodic boundary conditions and an arbitrary density of up arrows (per line) in the regime $Delta<1$. As an application, we provide a short, fully rigorous computation of the free energy of the six-vertex model on the torus, as well as an asymptotic expansion of the six-vertex partition functions when the density of up arrows approaches $1/2$. This latter result is at the base of a number of recent results, in particular the rigorous proof of continuity/discontinuity of the phase transition of the random-cluster model, the localization/delocalization behaviour of the six-vertex height function when $a=b=1$ and $cge1$, and the rotational invariance of the six-vertex model and the Fortuin-Kasteleyn percolation.
104 - W. Galleas 2018
In this letter we show the partition function of the 8VSOS model with domain-wall boundaries satisfies the same type of functional equations as its six-vertex model counterpart. We then use these refined functional equations to obtain novel determinantal representations for the aforementioned partition function.
We describe a conjectural classification of Poisson vertex algebras of CFT type and of Poisson vertex algebras in one differential variable (= scalar Hamiltonian operators).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا