No Arabic abstract
We report pulsed electron-spin resonance (ESR) measurements on an ensemble of Bismuth donors in Silicon cooled at 10mK in a dilution refrigerator. Using a Josephson parametric microwave amplifier combined with high-quality factor superconducting micro-resonators cooled at millikelvin temperatures, we improve the state-of-the-art sensitivity of inductive ESR detection by nearly 4 orders of magnitude. We demonstrate the detection of 1700 bismuth donor spins in silicon within a single Hahn echo with unit signal-to-noise (SNR) ratio, reduced to just 150 spins by averaging a single Carr-Purcell-Meiboom-Gill sequence. This unprecedented sensitivity reaches the limit set by quantum fluctuations of the electromagnetic field instead of thermal or technical noise, which constitutes a novel regime for magnetic resonance.
We report on electron spin resonance spectroscopy measurements using a superconducting flux qubit with a sensing volume of 6 fl. The qubit is read out using a frequency-tunable Josephson bifurcation amplifier, which leads to an inferred measurement sensitivity of about 20 spins in a 1 s measurement. This sensitivity represents an order of magnitude improvement when compared with flux-qubit schemes using a dc-SQUID switching readout. Furthermore, noise spectroscopy reveals that the sensitivity is limited by flicker ($1/f$) flux noise.
We report electron spin resonance spectroscopy measurements performed at millikelvin temperatures in a custom-built spectrometer comprising a superconducting micro-resonator at $7$ GHz and a Josephson parametric amplifier. Owing to the small ${sim}10^{-12}lambda^3$ magnetic resonator mode volume and to the low noise of the parametric amplifier, the spectrometer sensitivity reaches $260pm40$ spins$/$echo and $65pm10$ $mathrm{spins}/sqrt{text{Hz}}$, respectively.
The Zeeman-split spin-states of a single electron confined in a self-assembled quantum dot provide an optically-accessible spin qubit. For III-V materials the nuclear spins of the solid-state host provide an intrinsic noise source, resulting in electron-spin dephasing times of few nanoseconds. While a comprehensive study of electron-spin dynamics at low magnetic field has recently been carried out, what limits the electron coherence in these systems remains unclear, in part due to the dominant effect of measurement-induced dynamic polarisation of the nuclear bath. We develop an all-optical method to access the quantum dot spin-state without perturbing the nuclear environment. We use this method to implement Hahn-echo decoupling and reach the intrinsic limit to coherence set by inhomogeneous strain fields coupling to quadrupolar moments of the nuclear bath. These results indicate that the extension of electron spin coherence beyond this few-microsecond limit necessitates the reduction of strain-induced quadrupolar broadening in these materials.
We report electron spin resonance measurements of donors in silicon at millikelvin temperatures using a superconducting $LC$ planar micro-resonator and a Josephson Parametric Amplifier. The resonator includes a nanowire inductor, defining a femtoliter detection volume. Due to strain in the substrate, the donor resonance lines are heavily broadened. Single-spin to photon coupling strengths up to $sim 3~text{kHz}$ are observed. The single shot sensitivity is $120 pm 24~$spins/Hahn echo, corresponding to $approx 12 pm 3$~spins$/sqrt{text{Hz}}$ for repeated acquisition.
A new method for detecting the magnetic resonance of electronic spins at low temperature is demonstrated. It consists in measuring the signal emitted by the spins with a superconducting qubit that acts as a single-microwave-photon detector, resulting in an enhanced sensitivity. We implement this new type of electron-spin resonance spectroscopy using a hybrid quantum circuit in which a transmon qubit is coupled to a spin ensemble consisting of NV centers in diamond. With this setup we measure the NV center absorption spectrum at 30mK at an excitation level of thicksim15,mu_{B} out of an ensemble of 10^{11} spins.