Do you want to publish a course? Click here

Inductive-detection electron-spin resonance spectroscopy with $mathbf{65},$spins$/sqrt{text{Hz}}$ sensitivity

117   0   0.0 ( 0 )
 Added by Sebastian Probst
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report electron spin resonance spectroscopy measurements performed at millikelvin temperatures in a custom-built spectrometer comprising a superconducting micro-resonator at $7$ GHz and a Josephson parametric amplifier. Owing to the small ${sim}10^{-12}lambda^3$ magnetic resonator mode volume and to the low noise of the parametric amplifier, the spectrometer sensitivity reaches $260pm40$ spins$/$echo and $65pm10$ $mathrm{spins}/sqrt{text{Hz}}$, respectively.



rate research

Read More

We report electron spin resonance measurements of donors in silicon at millikelvin temperatures using a superconducting $LC$ planar micro-resonator and a Josephson Parametric Amplifier. The resonator includes a nanowire inductor, defining a femtoliter detection volume. Due to strain in the substrate, the donor resonance lines are heavily broadened. Single-spin to photon coupling strengths up to $sim 3~text{kHz}$ are observed. The single shot sensitivity is $120 pm 24~$spins/Hahn echo, corresponding to $approx 12 pm 3$~spins$/sqrt{text{Hz}}$ for repeated acquisition.
235 - P. London , , J. Scheuer 2013
We report the detection and polarization of nuclear spins in diamond at room temperature by using a single nitrogen-vacancy (NV) center. We use Hartmann-Hahn double resonance to coherently enhance the signal from a single nuclear spin while decoupling from the noisy spin-bath, which otherwise limits the detection sensitivity. As a proof-of-principle we: (I) observe coherent oscillations between the NV center and a weakly coupled nuclear spin, (II) demonstrate nuclear bath cooling which prolongs the coherence time of the NV sensor by more than a factor of five. Our results provide a route to nanometer scale magnetic resonance imaging, and novel quantum information processing protocols.
321 - A. Bienfait , J. J. Pla , Y. Kubo 2015
We report pulsed electron-spin resonance (ESR) measurements on an ensemble of Bismuth donors in Silicon cooled at 10mK in a dilution refrigerator. Using a Josephson parametric microwave amplifier combined with high-quality factor superconducting micro-resonators cooled at millikelvin temperatures, we improve the state-of-the-art sensitivity of inductive ESR detection by nearly 4 orders of magnitude. We demonstrate the detection of 1700 bismuth donor spins in silicon within a single Hahn echo with unit signal-to-noise (SNR) ratio, reduced to just 150 spins by averaging a single Carr-Purcell-Meiboom-Gill sequence. This unprecedented sensitivity reaches the limit set by quantum fluctuations of the electromagnetic field instead of thermal or technical noise, which constitutes a novel regime for magnetic resonance.
We report on electron spin resonance spectroscopy measurements using a superconducting flux qubit with a sensing volume of 6 fl. The qubit is read out using a frequency-tunable Josephson bifurcation amplifier, which leads to an inferred measurement sensitivity of about 20 spins in a 1 s measurement. This sensitivity represents an order of magnitude improvement when compared with flux-qubit schemes using a dc-SQUID switching readout. Furthermore, noise spectroscopy reveals that the sensitivity is limited by flicker ($1/f$) flux noise.
We report the nanoscale spin detection and electron paramagnetic resonance (EPR) spectrum of copper (Cu$^{2+}$) ions via double electron-electron resonance with single spins in diamond at room temperature and low magnetic fields. We measure unexpectedly narrow EPR resonances with linewidths $sim 2-3$ MHz from copper-chloride molecules dissolved in poly-lysine. We also observe coherent Rabi oscillations and hyperfine splitting from single Cu$^{2+}$ ions, which could be used for dynamic nuclear spin polarization and higher sensitivity of spin detection. We interpret and analyze these observations using both spin hamiltonian modeling of the copper-chloride molecules and numerical simulations of the predicted DEER response, and obtain a sensing volume $sim (250 text{nm})^3$. This work will open the door for copper-labeled EPR measurements under ambient conditions in bio-molecules and nano-materials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا