Do you want to publish a course? Click here

Electron spin resonance detected by a superconducting qubit

182   0   0.0 ( 0 )
 Added by Patrice Bertet
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

A new method for detecting the magnetic resonance of electronic spins at low temperature is demonstrated. It consists in measuring the signal emitted by the spins with a superconducting qubit that acts as a single-microwave-photon detector, resulting in an enhanced sensitivity. We implement this new type of electron-spin resonance spectroscopy using a hybrid quantum circuit in which a transmon qubit is coupled to a spin ensemble consisting of NV centers in diamond. With this setup we measure the NV center absorption spectrum at 30mK at an excitation level of thicksim15,mu_{B} out of an ensemble of 10^{11} spins.



rate research

Read More

We report on electron spin resonance spectroscopy measurements using a superconducting flux qubit with a sensing volume of 6 fl. The qubit is read out using a frequency-tunable Josephson bifurcation amplifier, which leads to an inferred measurement sensitivity of about 20 spins in a 1 s measurement. This sensitivity represents an order of magnitude improvement when compared with flux-qubit schemes using a dc-SQUID switching readout. Furthermore, noise spectroscopy reveals that the sensitivity is limited by flicker ($1/f$) flux noise.
Superconducting qubits are a leading candidate for quantum computing but display temporal fluctuations in their energy relaxation times T1. This introduces instabilities in multi-qubit device performance. Furthermore, autocorrelation in these time fluctuations introduces challenges for obtaining representative measures of T1 for process optimization and device screening. These T1 fluctuations are often attributed to time varying coupling of the qubit to defects, putative two level systems (TLSs). In this work, we develop a technique to probe the spectral and temporal dynamics of T1 in single junction transmons by repeated T1 measurements in the frequency vicinity of the bare qubit transition, via the AC-Stark effect. Across 10 qubits, we observe strong correlations between the mean T1 averaged over approximately nine months and a snapshot of an equally weighted T1 average over the Stark shifted frequency range. These observations are suggestive of an ergodic-like spectral diffusion of TLSs dominating T1, and offer a promising path to more rapid T1 characterization for device screening and process optimization.
Electron-spin nitrogen-vacancy color centers in diamond are a natural candidate to act as a quantum memory for superconducting qubits because of their large collective coupling and long coherence times. We report here the first demonstration of strong coupling and coherent exchange of a single quantum of energy between a flux-qubit and an ensemble of nitrogen-vacancy color centers.
Defects with associated electron and nuclear spins in solid-state materials have a long history relevant to quantum information science going back to the first spin echo experiments with silicon dopants in the 1950s. Since the turn of the century, the field has rapidly spread to a vast array of defects and host crystals applicable to quantum communication, sensing, and computing. From simple spin resonance to long-distance remote entanglement, the complexity of working with spin defects is fast advancing, and requires an in-depth understanding of their spin, optical, charge, and material properties in this modern context. This is especially critical for discovering new relevant systems dedicated to specific quantum applications. In this review, we therefore expand upon all the key components with an emphasis on the properties of defects and the host material, on engineering opportunities and other pathways for improvement. Finally, this review aims to be as defect and material agnostic as possible, with some emphasis on optical emitters, providing a broad guideline for the field of solid-state spin defects for quantum information.
We measure the quantum fluctuations of a pumped nonlinear resonator, using a superconducting artificial atom as an in-situ probe. The qubit excitation spectrum gives access to the frequency and temperature of the intracavity field fluctuations. These are found to be in agreement with theoretical predictions; in particular we experimentally observe the phenomenon of quantum heating.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا