No Arabic abstract
The Zeeman-split spin-states of a single electron confined in a self-assembled quantum dot provide an optically-accessible spin qubit. For III-V materials the nuclear spins of the solid-state host provide an intrinsic noise source, resulting in electron-spin dephasing times of few nanoseconds. While a comprehensive study of electron-spin dynamics at low magnetic field has recently been carried out, what limits the electron coherence in these systems remains unclear, in part due to the dominant effect of measurement-induced dynamic polarisation of the nuclear bath. We develop an all-optical method to access the quantum dot spin-state without perturbing the nuclear environment. We use this method to implement Hahn-echo decoupling and reach the intrinsic limit to coherence set by inhomogeneous strain fields coupling to quadrupolar moments of the nuclear bath. These results indicate that the extension of electron spin coherence beyond this few-microsecond limit necessitates the reduction of strain-induced quadrupolar broadening in these materials.
We report pulsed electron-spin resonance (ESR) measurements on an ensemble of Bismuth donors in Silicon cooled at 10mK in a dilution refrigerator. Using a Josephson parametric microwave amplifier combined with high-quality factor superconducting micro-resonators cooled at millikelvin temperatures, we improve the state-of-the-art sensitivity of inductive ESR detection by nearly 4 orders of magnitude. We demonstrate the detection of 1700 bismuth donor spins in silicon within a single Hahn echo with unit signal-to-noise (SNR) ratio, reduced to just 150 spins by averaging a single Carr-Purcell-Meiboom-Gill sequence. This unprecedented sensitivity reaches the limit set by quantum fluctuations of the electromagnetic field instead of thermal or technical noise, which constitutes a novel regime for magnetic resonance.
A major problem facing the realisation of scalable solid-state quantum computing is that of overcoming decoherence - the process whereby phase information encoded in a qubit is lost as the qubit interacts with its environment. Due to the vast number of environmental degrees of freedom, it is challenging to accurately calculate decoherence times $T_2$, especially when the qubit and environment are highly correlated. Hybrid or mixed electron-nuclear spin qubits, such as donors in silicon, possess optimal working points (OWPs) which are sweet-spots for reduced decoherence in magnetic fields. Analysis of sharp variations of $T_2$ near OWPs was previously based on insensitivity to classical noise, even though hybrid qubits are situated in highly correlated quantum environments, such as the nuclear spin bath of $^{29}$Si impurities. This presented limited understanding of the decoherence mechanism and gave unreliable predictions for $T_2$. I present quantum many-body calculations of the qubit-bath dynamics, which (i) yield $T_2$ for hybrid qubits in excellent agreement with experiments in multiple regimes, (ii) elucidate the many-body nature of the nuclear spin bath and (iii) expose significant differences between quantum-bath and classical-field decoherence. To achieve these, the cluster correlation expansion was adapted to include electron-nuclear state mixing. In addition, an analysis supported by experiment was carried out to characterise the nuclear spin bath for a bismuth donor as the hybrid qubit, a simple analytical formula for $T_2$ was derived with predictions in agreement with experiment, and the established method of dynamical decoupling was combined with operating near OWPs in order to maximise $T_2$. Finally, the decoherence of a $^{29}$Si spin in proximity to the hybrid qubit was studied, in order to establish the feasibility for its use as a quantum register.
The uncontrolled interaction of a quantum system with its environment is detrimental for quantum coherence. In the context of solid-state qubits, techniques to mitigate the impact of fluctuating electric and magnetic fields from the environment are well-developed. In contrast, suppression of decoherence from thermal lattice vibrations is typically achieved only by lowering the temperature of operation. Here, we use a nano-electro-mechanical system (NEMS) to mitigate the effect of thermal phonons on a solid-state quantum emitter without changing the system temperature. We study the silicon-vacancy (SiV) colour centre in diamond which has optical and spin transitions that are highly sensitive to phonons. First, we show that its electronic orbitals are highly susceptible to local strain, leading to its high sensitivity to phonons. By controlling the strain environment, we manipulate the electronic levels of the emitter to probe, control, and eventually, suppress its interaction with the thermal phonon bath. Strain control allows for both an impressive range of optical tunability and significantly improved spin coherence. Finally, our findings indicate that it may be possible to achieve strong coupling between the SiV spin and single phonons, which can lead to the realisation of phonon-mediated quantum gates and nonlinear quantum phononics.
We experimentally investigate the protection of electron spin coherence of nitrogen vacancy (NV) center in diamond by dynamical nuclear polarization. The electron spin decoherence of an NV center is caused by the magnetic ield fluctuation of the $^{13}$C nuclear spin bath, which contributes large thermal fluctuation to the center electron spin when it is in equilibrium state at room temperature. To address this issue, we continuously transfer the angular momentum from electron spin to nuclear spins, and pump the nuclear spin bath to a polarized state under Hartman-Hahn condition. The bath polarization effect is verified by the observation of prolongation of the electron spin coherence time ($T_2^*$). Optimal conditions for the dynamical nuclear polarization (DNP) process, including the pumping pulse duration and depolarization effect of laser pulses, are studied. Our experimental results provide strong support for quantum information processing and quantum simulation using polarized nuclear spin bath in solid state systems.
A promising approach for multi-qubit quantum registers is to use optically addressable spins to control multiple dark electron-spin defects in the environment. While recent experiments have observed signatures of coherent interactions with such dark spins, it is an open challenge to realize the individual control required for quantum information processing. Here we demonstrate the initialisation, control and entanglement of individual dark spins associated to multiple P1 centers, which are part of a spin bath surrounding a nitrogen-vacancy center in diamond. We realize projective measurements to prepare the multiple degrees of freedom of P1 centers - their Jahn-Teller axis, nuclear spin and charge state - and exploit these to selectively access multiple P1s in the bath. We develop control and single-shot readout of the nuclear and electron spin, and use this to demonstrate an entangled state of two P1 centers. These results provide a proof-of-principle towards using dark electron-nuclear spin defects as qubits for quantum sensing, computation and networks.