Do you want to publish a course? Click here

Rigorous results for a population model with selection II: genealogy of the population

290   0   0.0 ( 0 )
 Added by Jason Schweinsberg
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We consider a model of a population of fixed size $N$ undergoing selection. Each individual acquires beneficial mutations at rate $mu_N$, and each beneficial mutation increases the individuals fitness by $s_N$. Each individual dies at rate one, and when a death occurs, an individual is chosen with probability proportional to the individuals fitness to give birth. Under certain conditions on the parameters $mu_N$ and $s_N$, we show that the genealogy of the population can be described by the Bolthausen-Sznitman coalescent. This result confirms predictions of Desai, Walczak, and Fisher (2013), and Neher and Hallatschek (2013).



rate research

Read More

224 - Jason Schweinsberg 2015
We consider a model of a population of fixed size $N$ undergoing selection. Each individual acquires beneficial mutations at rate $mu_N$, and each beneficial mutation increases the individuals fitness by $s_N$. Each individual dies at rate one, and when a death occurs, an individual is chosen with probability proportional to the individuals fitness to give birth. Under certain conditions on the parameters $mu_N$ and $s_N$, we obtain rigorous results for the rate at which mutations accumulate in the population and the distribution of the fitnesses of individuals in the population at a given time. Our results confirm predictions of Desai and Fisher (2007).
We investigate the behaviour of the genealogy of a Wright-Fisher population model under the influence of a strong seed-bank effect. More precisely, we consider a simple seed-bank age distribution with two atoms, leading to either classical or long genealogical jumps (the latter modeling the effect of seed-dormancy). We assume that the length of these long jumps scales like a power $N^beta$ of the original population size $N$, thus giving rise to a `strong seed-bank effect. For a certain range of $beta$, we prove that the ancestral process of a sample of $n$ individuals converges under a non-classical time-scaling to Kingmans $n-$coalescent. Further, for a wider range of parameters, we analyze the time to the most recent common ancestor of two individuals analytically and by simulation.
We derive and apply a partial differential equation for the moment generating function of the Wright-Fisher model of population genetics.
127 - Rene Carmona 2014
We use a simple N-player stochastic game with idiosyncratic and common noises to introduce the concept of Master Equation originally proposed by Lions in his lectures at the Coll`ege de France. Controlling the limit N tends to the infinity of the explicit solution of the N-player game, we highlight the stochastic nature of the limit distributions of the states of the players due to the fact that the random environment does not average out in the limit, and we recast the Mean Field Game (MFG) paradigm in a set of coupled Stochastic Partial Differential Equations (SPDEs). The first one is a forward stochastic Kolmogorov equation giving the evolution of the conditional distributions of the states of the players given the common noise. The second is a form of stochastic Hamilton Jacobi Bellman (HJB) equation providing the solution of the optimization problem when the flow of conditional distributions is given. Being highly coupled, the system reads as an infinite dimensional Forward Backward Stochastic Differential Equation (FBSDE). Uniqueness of a solution and its Markov property lead to the representation of the solution of the backward equation (i.e. the value function of the stochastic HJB equation) as a deterministic function of the solution of the forward Kolmogorov equation, function which is usually called the decoupling field of the FBSDE. The (infinite dimensional) PDE satisfied by this decoupling field is identified with the textit{master equation}. We also show that this equation can be derived for other large populations equilibriums like those given by the optimal control of McKean-Vlasov stochastic differential equations. The paper is written more in the style of a review than a technical paper, and we spend more time and energy motivating and explaining the probabilistic interpretation of the Master Equation, than identifying the most general set of assumptions under which our claims are true.
A stochastic model of susceptible/infected/removed (SIR) type, inspired by COVID-19, is introduced for the spread of infection through a spatially-distributed population. Individuals are initially distributed at random in space, and they move continuously according to independent random processes. The disease may pass from an infected individual to an uninfected individual when they are sufficiently close. Infected individuals are permanently removed at some given rate $alpha$. Two models are studied here, termed the delayed diffusion and the diffusion models. In the first, individuals are stationary until they are infected, at which time they begin to move; in the second, all individuals start to move at the initial time $0$. Using a perturbative argument, conditions are established under which the disease infects a.s. only finitely many individuals. It is proved for the delayed diffusion model that there exists a critical value $alpha_cin(0,infty)$ for the existence of a pandemic.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا