Do you want to publish a course? Click here

Genealogy of a Wright Fisher model with strong seed bank component

155   0   0.0 ( 0 )
 Added by Noemi Kurt
 Publication date 2014
  fields Biology
and research's language is English




Ask ChatGPT about the research

We investigate the behaviour of the genealogy of a Wright-Fisher population model under the influence of a strong seed-bank effect. More precisely, we consider a simple seed-bank age distribution with two atoms, leading to either classical or long genealogical jumps (the latter modeling the effect of seed-dormancy). We assume that the length of these long jumps scales like a power $N^beta$ of the original population size $N$, thus giving rise to a `strong seed-bank effect. For a certain range of $beta$, we prove that the ancestral process of a sample of $n$ individuals converges under a non-classical time-scaling to Kingmans $n-$coalescent. Further, for a wider range of parameters, we analyze the time to the most recent common ancestor of two individuals analytically and by simulation.



rate research

Read More

We derive and apply a partial differential equation for the moment generating function of the Wright-Fisher model of population genetics.
Using graphical methods based on a `lookdown and pruned version of the {em ancestral selection graph}, we obtain a representation of the type distribution of the ancestor in a two-type Wright-Fisher population with mutation and selection, conditional on the overall type frequency in the old population. This extends results from Lenz, Kluth, Baake, and Wakolbinger (Theor. Pop. Biol., 103 (2015), 27-37) to the case of heavy-tailed offspring, directed by a reproduction measure $Lambda$. The representation is in terms of the equilibrium tail probabilities of the line-counting process $L$ of the graph. We identify a strong pathwise Siegmund dual of $L$, and characterise the equilibrium tail probabilities of $L$ in terms of hitting probabilities of the dual process.
We construct a family of genealogy-valued Markov processes that are induced by a continuous-time Markov population process. We derive exact expressions for the likelihood of a given genealogy conditional on the history of the underlying population process. These lead to a version of the nonlinear filtering equation, which can be used to design efficient Monte Carlo inference algorithms. Existing full-information approaches for phylodynamic inference are special cases of the theory.
We introduce a new class of stochastic partial differential equations (SPDEs) with seed bank modeling the spread of a beneficial allele in a spatial population where individuals may switch between an active and a dormant state. Incorporating dormancy and the resulting seed bank leads to a two-type coupled system of equations with migration between both states. We first discuss existence and uniqueness of seed bank SPDEs and provide an equivalent delay representation that allows a clear interpretation of the age structure in the seed bank component. The delay representation will also be crucial in the proofs. Further, we show that the seed bank SPDEs give rise to an interesting class of on/off moment duals. In particular, in the special case of the F-KPP Equation with seed bank, the moment dual is given by an on/off-branching Brownian motion. This system differs from a classical branching Brownian motion in the sense that independently for all individuals, motion and branching may be switched off for an exponential amount of time after which they get switched on again. Here, as an application of our duality, we show that the spread of a beneficial allele, which in the classical F-KPP Equation, started from a Heaviside intial condition, evolves as a pulled traveling wave with speed $sqrt{2}$, is slowed down significantly in the corresponding seed bank F-KPP model. In fact, by computing bounds on the position of the rightmost particle in the dual on/off-branching Brownian motion, we obtain an upper bound for the speed of propagation of the beneficial allele given by $sqrt{sqrt{5}-1}approx 1.111$ under unit switching rates. This shows that seed banks will indeed slow down fitness waves and preserve genetic variability, in line with intuitive reasoning from population genetics and ecology.
Consider a two-type Moran population of size $N$ subject to selection and mutation, which is immersed in a varying environment. The population is susceptible to exceptional changes in the environment, which accentuate the selective advantage of the fit individuals. In this setting, we show that the type-composition in the population is continuous with respect to the environment. This allows us to replace the deterministic environment by a random one, which is driven by a subordinator. Assuming that selection, mutation and the environment are weak in relation to $N$, we show that the type-frequency process, with time speed up by $N$, converges as $Ntoinfty$ to a Wright--Fisher-type SDE with a jump term modeling the effect of the environment. Next, we study the asymptotic behavior of the limiting model in the far future and in the distant past, both in the annealed and in the quenched setting. Our approach builds on the genealogical picture behind the model. The latter is described by means of an extension of the ancestral selection graph (ASG). The formal relation between forward and backward objects is given in the form of a moment duality between the type-frequency process and the line-counting process of a pruned version of the ASG. This relation yields characterizations of the annealed and the quenched moments of the asymptotic type distribution. A more involved pruning of the ASG allows us to obtain annealed and quenched results for the ancestral type distribution. In the absence of mutations, one of the types fixates and our results yield expressions for the fixation probabilities.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا