Do you want to publish a course? Click here

QoE-Oriented Resource Allocation for 360-degree Video Transmission over Heterogeneous Networks

118   0   0.0 ( 0 )
 Added by Wei Huang Dr.
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Immersive media streaming, especially virtual reality (VR)/360-degree video streaming which is very bandwidth demanding, has become more and more popular due to the rapid growth of the multimedia and networking deployments. To better explore the usage of resource and achieve better quality of experience (QoE) perceived by users, this paper develops an application-layer scheme to jointly exploit the available bandwidth from the LTE and Wi-Fi networks in 360-degree video streaming. This newly proposed scheme and the corresponding solution algorithms utilize the saliency of video, prediction of users view and the status information of users to obtain an optimal association of the users with different Wi-Fi access points (APs) for maximizing the systems utility. Besides, a novel buffer strategy is proposed to mitigate the influence of short-time prediction problem for transmitting 360-degree videos in time-varying networks. The promising performance and low complexity of the proposed scheme and algorithms are validated in simulations with various 360-degree videos.



rate research

Read More

In this paper, we study the server-side rate adaptation problem for streaming tile-based adaptive 360-degree videos to multiple users who are competing for transmission resources at the network bottleneck. Specifically, we develop a convolutional neural network (CNN)-based viewpoint prediction model to capture the nonlinear relationship between the future and historical viewpoints. A Laplace distribution model is utilized to characterize the probability distribution of the prediction error. Given the predicted viewpoint, we then map the viewport in the spherical space into its corresponding planar projection in the 2-D plane, and further derive the visibility probability of each tile based on the planar projection and the prediction error probability. According to the visibility probability, tiles are classified as viewport, marginal and invisible tiles. The server-side tile rate allocation problem for multiple users is then formulated as a non-linear discrete optimization problem to minimize the overall received video distortion of all users and the quality difference between the viewport and marginal tiles of each user, subject to the transmission capacity constraints and users specific viewport requirements. We develop a steepest descent algorithm to solve this non-linear discrete optimization problem, by initializing the feasible starting point in accordance with the optimal solution of its continuous relaxation. Extensive experimental results show that the proposed algorithm can achieve a near-optimal solution, and outperforms the existing rate adaptation schemes for tile-based adaptive 360-video streaming.
In this paper, we introduce the problem of decision-oriented communications, that is, the goal of the source is to send the right amount of information in order for the intended destination to execute a task. More specifically, we restrict our attention to how the source should quantize information so that the destination can maximize a utility function which represents the task to be executed only knowing the quantized information. For example, for utility functions under the form $uleft(boldsymbol{x}; boldsymbol{g}right)$, $boldsymbol{x}$ might represent a decision in terms of using some radio resources and $boldsymbol{g}$ the system state which is only observed through its quantized version $Q(boldsymbol{g})$. Both in the case where the utility function is known and the case where it is only observed through its realizations, we provide solutions to determine such a quantizer. We show how this approach applies to energy-efficient power allocation. In particular, it is seen that quantizing the state very roughly is perfectly suited to sum-rate-type function maximization, whereas energy-efficiency metrics are more sensitive to imperfections.
124 - Chengjun Guo , Ying Cui , Zhi Liu 2021
In this paper, we study the optimal transmission of a multi-quality tiled 360 virtual reality (VR) video from a multi-antenna server (e.g., access point or base station) to multiple single-antenna users in a multiple-input multiple-output (MIMO)-orthogonal frequency division multiple access (OFDMA) system. We minimize the total transmission power with respect to the subcarrier allocation constraints, rate allocation constraints, and successful transmission constraints, by optimizing the beamforming vector and subcarrier, transmission power and rate allocation. The formulated resource allocation problem is a challenging mixed discrete-continuous optimization problem. We obtain an asymptotically optimal solution in the case of a large antenna array, and a suboptimal solution in the general case. As far as we know, this is the first work providing optimization-based design for 360 VR video transmission in MIMO-OFDMA systems. Finally, by numerical results, we show that the proposed solutions achieve significant improvement in performance compared to the existing solutions.
We develop the optimal economical caching schemes in cache-enabled heterogeneous networks, while delivering multimedia video services with personalized viewing qualities to mobile users. By applying scalable video coding (SVC), each video file to be requested is divided into one base layer (BL) and several enhancement layers (ELs). In order to assign different transmission tasks, the serving small-cell base stations (SBSs) are grouped into K clusters. The SBSs are able to cache and cooperatively transmit BL and EL contents to the user. We analytically derive the expressions for successful transmission probability and ergodic service rate, and then the closed form of EConomical Efficiency (ECE) is obtained. In order to enhance the ECE performance, we formulate the ECE optimization problems for two cases. In the first case, with equal cache size equipped at each SBS, the layer caching indicator is determined. Since this problem is NP-hard, after the l0-norm approximation, the discrete optimization variables are relaxed to be continuous, and this relaxed problem is convex. Next, based on the optimal solution derived from the relaxed problem, we devise a greedystrategy based heuristic algorithm to achieve the near-optimal layer caching indicators. In the second case, the cache size for each SBS, the layer size and the layer caching indicator are jointly optimized. This problem is a mixed integer programming problem, which is more challenging. To effectively solve this problem, the original ECE maximization problem is divided into two subproblems. These two subproblems are iteratively solved until the original optimization problem is convergent. Numerical results verify the correctness of theoretical derivations. Additionally, compared to the most popular layer placement strategy, the performance superiority of the proposed SVC-based caching schemes is testified.
Omnidirectional (or 360-degree) images and videos are emergent signals in many areas such as robotics and virtual/augmented reality. In particular, for virtual reality, they allow an immersive experience in which the user is provided with a 360-degree field of view and can navigate throughout a scene, e.g., through the use of Head Mounted Displays. Since it represents the full 360-degree field of view from one point of the scene, omnidirectional content is naturally represented as spherical visual signals. Current approaches for capturing, processing, delivering, and displaying 360-degree content, however, present many open technical challenges and introduce several types of distortions in these visual signals. Some of the distortions are specific to the nature of 360-degree images, and often different from those encountered in the classical image communication framework. This paper provides a first comprehensive review of the most common visual distortions that alter 360-degree signals undergoing state of the art processing in common applications. While their impact on viewers visual perception and on the immersive experience at large is still unknown ---thus, it stays an open research topic--- this review serves the purpose of identifying the main causes of visual distortions in the end-to-end 360-degree content distribution pipeline. It is essential as a basis for benchmarking different processing techniques, allowing the effective design of new algorithms and applications. It is also necessary to the deployment of proper psychovisual studies to characterise the human perception of these new images in interactive and immersive applications.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا