Do you want to publish a course? Click here

Koszul duality for semidirect products and generalized Takiff algebras

284   0   0.0 ( 0 )
 Added by Jacob Greenstein
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We obtain Koszul-type dualities for categories of graded modules over a graded associative algebra which can be realized as the semidirect product of a bialgebra coinciding with its degree zero part and a graded module algebra for the latter. In particular, this applies to graded representations of the universal enveloping algebra of the Takiff Lie algebra (or the truncated current algebra) and its (super)analogues, and also to semidirect products of quantum groups with braided symmetric and exterior module algebras in case the latter are flat deformations of classical ones.



rate research

Read More

98 - A. I. Molev 2020
For every simple Lie algebra $mathfrak{g}$ we consider the associated Takiff algebra $mathfrak{g}^{}_{ell}$ defined as the truncated polynomial current Lie algebra with coefficients in $mathfrak{g}$. We use a matrix presentation of $mathfrak{g}^{}_{ell}$ to give a uniform construction of algebraically independent generators of the center of the universal enveloping algebra ${rm U}(mathfrak{g}^{}_{ell})$. A similar matrix presentation for the affine Kac--Moody algebra $widehat{mathfrak{g}}^{}_{ell}$ is then used to prove an analogue of the Feigin--Frenkel theorem describing the center of the corresponding affine vertex algebra at the critical level. The proof relies on an explicit construction of a complete set of Segal--Sugawara vectors for the Lie algebra $mathfrak{g}^{}_{ell}$.
We establish a categorical version of Vogan duality for quasi-split real groups. This proves a conjecture of Soergel in the quasi-split case.
We investigate various ways to define an analogue of BGG category $mathcal{O}$ for the non-semi-simple Takiff extension of the Lie algebra $mathfrak{sl}_2$. We describe Gabriel quivers for blocks of these analogues of category $mathcal{O}$ and prove extension fullness of one of them in the category of all modules.
We develop a theory of semidirect products of partial groups and localities. Our concepts generalize the notions of direct products of partial groups and localities, and of semidirect products of groups.
The aim of this sequel to arXiv:1812.02935 is to set up the cornerstones of Koszul duality and Koszulity in the context of a large class of operadic categories. In particular, we will prove that operads, in the generalized sense of Batanin-Markl, governing important operad- and/or PROP-like structures such as the classical operads, their variants such as cyclic, modular or wheeled operads, and also diver
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا