This article establishes some elementary dualities for root systems with automorphisms. We give several applications to reductive groups over nonarchimedean local fields: (1) the proof of a conjecture of Pappas-Rapoport-Smithling characterizing the extremal elements of the ${ mu }$-admissible sets attached to general non-split groups; (2) for quasi-split groups, a simple uniform description of the Bruhat-Tits {e}chelonnage root system $Sigma_0$, the Knop root system $widetilde{Sigma}_0$, and the Macdonald root system $Sigma_1$, in terms of Galois actions on the absolute roots $Phi$; and (3) for quasi-split groups, the construction of the geometric basis of the center of a parahoric Hecke algebra, and the expression of certain important elements of the stable Bernstein center in terms of this basis.
We obtain Koszul-type dualities for categories of graded modules over a graded associative algebra which can be realized as the semidirect product of a bialgebra coinciding with its degree zero part and a graded module algebra for the latter. In particular, this applies to graded representations of the universal enveloping algebra of the Takiff Lie algebra (or the truncated current algebra) and its (super)analogues, and also to semidirect products of quantum groups with braided symmetric and exterior module algebras in case the latter are flat deformations of classical ones.
We show that Verdier duality for certain sheaves on the moduli spaces of graphs associated to Koszul operads corresponds to Koszul duality of operads. This in particular gives a conceptual explanation of the appearance of graph cohomology of both the commutative and Lie types in computations of the cohomology of the outer automorphism group of a free group. Another consequence is an explicit computation of dualizing sheaves on spaces of metric graphs, thus characterizing to which extent these spaces are different from oriented orbifolds. We also provide a relation between the cohomology of the space of metric ribbon graphs, known to be homotopy equivalent to the moduli space of Riemann surfaces, and the cohomology of a certain sheaf on the space of usual metric graphs.
The main purpose of this paper is to prove a group-theoretic generalization of a theorem of Katz on isocrystals. Along the way we reprove the group-theoretic generalization of Mazurs inequality for isocrystals due to Rapoport-Richartz, and generalize from split groups to unramified groups a result of Kottwitz-Rapoport which determines when an affine Deligne-Lusztig subset of the affine Grassmannian is non-empty.
In this paper we establish Springer correspondence for the symmetric pair $(mathrm{SL}(N),mathrm{SO}(N))$ using Fourier transform, parabolic induction functor, and a nearby cycle sheaves construction due to Grinberg. As applications, we obtain results on cohomology of Hessenberg varieties and geometric constructions of irreducible representations of Hecke algebras of symmetric groups at $q=-1$.