Do you want to publish a course? Click here

A double white dwarf with a paradoxical origin?

179   0   0.0 ( 0 )
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present Hubble Space Telescope UV spectra of the 4.6 h period double white dwarf SDSS J125733.63+542850.5. Combined with Sloan Digital Sky Survey optical data, these reveal that the massive white dwarf (secondary) has an effective temperature T2 = 13030 +/- 70 +/- 150 K and a surface gravity log g2 = 8.73 +/- 0.05 +/- 0.05 (statistical and systematic uncertainties respectively), leading to a mass of M2 = 1.06 Msun. The temperature of the extremely low-mass white dwarf (primary) is substantially lower at T1 = 6400 +/- 37 +/- 50 K, while its surface gravity is poorly constrained by the data. The relative flux contribution of the two white dwarfs across the spectrum provides a radius ratio of R1/R2 = 4.2, which, together with evolutionary models, allows us to calculate the cooling ages. The secondary massive white dwarf has a cooling age of about 1 Gyr, while that of the primary low-mass white dwarf is likely to be much longer, possibly larger than 5 Gyrs, depending on its mass and the strength of chemical diffusion. These results unexpectedly suggest that the low-mass white dwarf formed long before the massive white dwarf, a puzzling discovery which poses a paradox for binary evolution.

rate research

Read More

We report the discovery of SDSS J133725.26+395237.7 (hereafter SDSS J1337+3952), a double-lined white dwarf (WD+WD) binary identified in early data from the fifth generation Sloan Digital Sky Survey (SDSS-V). The double-lined nature of the system enables us to fully determine its orbital and stellar parameters with follow-up Gemini spectroscopy and Swift UVOT ultraviolet fluxes. The system is nearby ($d = 113$ pc), and consists of a $0.51, M_odot$ primary and a $0.32, M_odot$ secondary. SDSS J1337+3952 is a powerful source of gravitational waves in the millihertz regime, and will be detectable by future space-based interferometers. Due to this gravitational wave emission, the binary orbit will shrink down to the point of interaction in $approx 220$ Myr. The inferred stellar masses indicate that SDSS J1337+3952 will likely not explode as a Type Ia supernova (SN Ia). Instead, the system will probably merge and evolve into a rapidly rotating helium star, and could produce an under-luminous thermonuclear supernova along the way. The continuing search for similar systems in SDSS-V will grow the statistical sample of double-degenerate binaries across parameter space, constraining models of binary evolution and SNe Ia.
167 - Warren R. Brown 2017
We report the discovery of two detached double white dwarf (WD) binaries, SDSS J082239.546+304857.19 and SDSS J104336.275+055149.90, with orbital periods of 40 and 46 min, respectively. The 40 min system is eclipsing; it is composed of a 0.30 Msun and a 0.52 Msun WD. The 46 min system is a likely LISA verification binary. The short 20 Myr and ~34 Myr gravitational wave merger times of the two binaries imply that many more such systems have formed and merged over the age of the Milky Way. We update the estimated Milky Way He+CO WD binary merger rate and affirm our previously published result: He+CO WD binaries merge at a rate at least 40 times greater than the formation rate of stable mass-transfer AM~CVn binaries, and so the majority must have unstable mass-transfer. The implication is that spin-orbit coupling in He+CO WD mergers is weak, or perhaps nova-like outbursts drive He+CO WDs into merger as proposed by Shen.
Double white dwarf (double-WD) binaries may merge within a Hubble time and produce high-mass WDs. Compared to other high-mass WDs, the double-WD merger products have higher velocity dispersion because they are older. With the power of Gaia data, we show strong evidence for double-WD merger products among high-mass WDs by analyzing the transverse-velocity distribution of more than a thousand high-mass WDs (0.8--1.3 $M_odot$). We estimate that the fraction of double-WD merger products in our sample is about 20 %. We also obtain a precise double-WD merger rate and its mass dependence. Our merger rate estimates are close to binary population synthesis results and support the idea that double-WD mergers may contribute to a significant fraction of type Ia supernovae.
We present a comprehensive study of white dwarf collisions as an avenue for creating type Ia supernovae. Using a smooth particle hydrodynamics code with a 13-isotope, {alpha}-chain nuclear network, we examine the resulting 56Ni yield as a function of total mass, mass ratio, and impact parameter. We show that several combinations of white dwarf masses and impact parameters are able to produce sufficient quantities of 56Ni to be observable at cosmological distances. We find the 56Ni production in double-degenerate white dwarf collisions ranges from sub-luminous to the super-luminous, depending on the parameters of the collision. For all mass pairs, collisions with small impact parameters have the highest likelihood of detonating, but 56Ni production is insensitive to this parameter in high-mass combinations, which significantly increases their likelihood of detection. We also find that the 56Ni dependence on total mass and mass ratio is not linear, with larger mass primaries producing disproportionately more 56Ni than their lower mass secondary counterparts, and symmetric pairs of masses producing more 56Ni than asymmetric pairs.
The number of spatially unresolved white dwarf plus main-sequence star binaries has increased rapidly in the last decade, jumping from only ~30 in 2003 to over 3000. However, in the majority of known systems the companion to the white dwarf is a low mass M dwarf, since these are relatively easy to identify from optical colours and spectra. White dwarfs with more massive FGK type companions have remained elusive due to the large difference in optical brightness between the two stars. In this paper we identify 934 main-sequence FGK stars from the Radial Velocity Experiment (RAVE) survey in the southern hemisphere and the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) survey in the northern hemisphere, that show excess flux at ultraviolet wavelengths which we interpret as the likely presence of a white dwarf companion. We obtained Hubble Space Telescope ultraviolet spectra for nine systems which confirmed that the excess is indeed caused, in all cases, by a hot compact companion, eight being white dwarfs and one a hot subdwarf or pre-helium white dwarf, demonstrating that this sample is very clean. We also address the potential of this sample to test binary evolution models and type Ia supernovae formation channels.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا