No Arabic abstract
The number of spatially unresolved white dwarf plus main-sequence star binaries has increased rapidly in the last decade, jumping from only ~30 in 2003 to over 3000. However, in the majority of known systems the companion to the white dwarf is a low mass M dwarf, since these are relatively easy to identify from optical colours and spectra. White dwarfs with more massive FGK type companions have remained elusive due to the large difference in optical brightness between the two stars. In this paper we identify 934 main-sequence FGK stars from the Radial Velocity Experiment (RAVE) survey in the southern hemisphere and the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) survey in the northern hemisphere, that show excess flux at ultraviolet wavelengths which we interpret as the likely presence of a white dwarf companion. We obtained Hubble Space Telescope ultraviolet spectra for nine systems which confirmed that the excess is indeed caused, in all cases, by a hot compact companion, eight being white dwarfs and one a hot subdwarf or pre-helium white dwarf, demonstrating that this sample is very clean. We also address the potential of this sample to test binary evolution models and type Ia supernovae formation channels.
We present the second paper of a series of publications aiming at obtaining a better understanding regarding the nature of type Ia supernovae (SNIa) progenitors by studying a large sample of detached F, G and K main sequence stars in close orbits with white dwarf companions (i.e. WD+FGK binaries). We employ the LAMOST (Large Sky Area Multi-Object Fibre Spectroscopic Telescope) data release 4 spectroscopic data base together with GALEX (Galaxy Evolution Explorer) ultraviolet fluxes to identify 1,549 WD+FGK binary candidates (1,057 of which are new), thus doubling the number of known sources. We measure the radial velocities of 1,453 of these binaries from the available LAMOST spectra and/or from spectra obtained by us at a wide variety of different telescopes around the globe. The analysis of the radial velocity data allows us to identify 24 systems displaying more than 3sigma radial velocity variation that we classify as close binaries. We also discuss the fraction of close binaries among WD+FGK systems, which we find to be ~10 per cent, and demonstrate that high-resolution spectroscopy is required to efficiently identify double-degenerate SNIa progenitor candidates.
Constraints from surveys of post common envelope binaries (PCEBs) consisting of a white dwarf plus an M-dwarf companion have led to significant progress in our understanding of the formation of close white dwarf binary stars with low-mass companions. The white dwarf binary pathways project aims at extending these previous surveys to larger secondary masses, i.e. secondary stars of spectral type AFGK. Here we present the discovery and observational characterization of three PCEBs with G-type secondary stars and orbital periods between 1.2 and 2.5 days. Using our own tools as well as MESA we estimate the evolutionary history of the binary stars and predict their future. We find a large range of possible evolutionary histories for all three systems and identify no indications for differences in common envelope evolution compared to PCEBs with lower mass secondary stars. Despite their similarities in orbital period and secondary spectral type, we estimate that the future of the three systems are very different: TYC 4962-1205-1 is a progenitor of a cataclysmic variable system with an evolved donor star, TYC 4700-815-1 will run into dynamically unstable mass transfer that will cause the two stars to merge, and TYC 1380-957-1 may appear as super soft source before becoming a rather typical cataclysmic variable star.
Close white dwarf binaries consisting of a white dwarf and an A, F, G or K type main sequence star, henceforth close WD+AFGK binaries, are ideal systems to understand the nature of type Ia supernovae progenitors and to test binary evolution models. In this work we identify 775 WD+AFGK candidates from TGAS (The Tycho-Gaia Astrometric Solution) and Gaia Data Release 2 (DR2), a well-defined sample of stars with available parallaxes, and we measure radial velocities (RVs) for 275 of them with the aim of identifying close binaries. The RVs have been measured from high resolution spectra obtained at the Xinglong 2.16m Telescope and the San Pedro Martir 2.12m Telescope and/or from available LAMOST DR6 (low-resolution) and RAVE DR5 (medium-resolution) spectra. We identify 23 WD+AFGK systems displaying more than 3$sigma$ RV variation among 151 systems for which the measured values are obtained from different nights. Our WD+AFGK binary sample contains both AFGK dwarfs and giants, with a giant fraction $sim$43%. The close binary fractions we determine for the WD+AFGK dwarf and giant samples are $simeq$24% and $simeq$15%, respectively. We also determine the stellar parameters (i.e. effective temperature, surface gravity, metallicity, mass and radius) of the AFGK companions with available high resolution spectra. The stellar parameter distributions of the AFGK companions that are members of close and wide binary candidates do not show statistically significant differences.
This paper provides long-period and revised orbits for barium and S stars adding to previously published ones. The sample of barium stars with strong anomalies comprise all such stars present in the Lu et al. catalogue. We find orbital motion for all barium and extrinsic S stars monitored. We obtain the longest period known so far for a spectroscopic binary involving an S star, namely 57 Peg with a period of the order of 100 - 500 yr. We present the mass distribution for the barium stars, which ranges from 1 to 3 Msun, with a tail extending up to 5 Msun in the case of mild barium stars. This high-mass tail comprises mostly high-metallicity objects ([Fe/H] >= -0.1). Mass functions are compatible with WD companions and we derive their mass distribution which ranges from 0.5 to 1 Msun. Using the initial - final mass relationship established for field WDs, we derived the distribution of the mass ratio q = MAGB,ini / MBa (where MAGB, ini is the WD progenitor initial mass, i.e., the mass of the system former primary component) which is a proxy for the initial mass ratio. It appears that the distribution of q is highly non uniform, and significantly different for mild and strong barium stars, the latter being characterized by values mostly in excess of 1.4, whereas mild barium stars occupy the range 1 - 1.4. We investigate as well the correlation between abundances, orbital periods, metallicities, and masses (barium star and WD companion). The 105 orbits of post-mass-transfer systems presented in this paper pave the way for a comparison with binary-evolution models.
White dwarf stars are the final stage of most stars, born single or in multiple systems. We discuss the identification, magnetic fields, and mass distribution for white dwarfs detected from spectra obtained by the Sloan Digital Sky Survey up to Data Release 13 in 2016, which lead to the increase in the number of spectroscopically identified white dwarf stars from 5000 to 39000. This number includes only white dwarf stars with log g >= 6.5 stars, i.e., excluding the Extremely Low Mass white dwarfs, which are necessarily the byproduct of stellar interaction.