Do you want to publish a course? Click here

Floquet-Engineered Valleytronics in Dirac Systems

182   0   0.0 ( 0 )
 Added by Babak Seradjeh
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Valley degrees of freedom offer a potential resource for quantum information processing if they can be effectively controlled. We discuss an optical approach to this problem in which intense light breaks electronic symmetries of a two-dimensional Dirac material. The resulting quasienergy structures may then differ for different valleys, so that the Floquet physics of the system can be exploited to produce highly polarized valley currents. This physics can be utilized to realize a valley valve whose behavior is determined optically. We propose a concrete way to achieve such valleytronics in graphene as well as in a simple model of an inversion-symmetry broken Dirac material. We study the effect numerically and demonstrate its robustness against moderate disorder and small deviations in optical parameters.



rate research

Read More

Electrons in a lattice exhibit time-periodic motion, known as Bloch oscillation, when subject to an additional static electric field. Here we show that a corresponding dynamics can occur upon replacing the spatially periodic potential by a time-periodic driving: Floquet oscillations of charge carriers in a spatially homogeneous system. The time lattice of the driving gives rise to Floquet bands that take on the role of the usual Bloch bands. For two different drivings (harmonic driving and periodic kicking through pulses) of systems with linear dispersion we demonstrate the existence of such oscillations, both by directly propagating wave packets and based on a complementary Floquet analysis. The Floquet oscillations feature richer oscillation patterns than their Bloch counterpart and enable the imaging of Floquet bands. Moreover, their period can be directly tuned through the driving frequency. Such oscillations should be experimentally observable in effective Dirac systems, such as graphene, when illuminated with circularly polarized light.
We analyze the valley selection rules for optical transitions from impurity states to the conduction band in two-dimensional Dirac materials, taking a monolayer of MoS2 as an example. We employ the analytical model of a shallow impurity potential which localizes electrons described by a spinor wave function, and, first, find the system eigenstates taking into account the presence of two valleys in the Brillouin zone. Then, we find the spectrum of the absorbance and calculate the photon-drag electric current due to the impurity-band transitions, drawing the general conclusions regarding the valley optical selection rules for the impurity-band optical transitions in gapped Dirac materials.
The low energy continuum limit of graphene is effectively known to be modeled using Dirac equation in (2+1) dimensions. We consider the possibility of using modulated high frequency periodic driving of a two-dimension system (optical lattice) to simulate properties of rippled graphene. We suggest that the Dirac Hamiltonian in a curved background space can also be effectively simulated by a suitable driving scheme in optical lattice. The time dependent system yields, in the approximate limit of high frequency pulsing, an effective time independent Hamiltonian that governs the time evolution, except for an initial and a final kick. We use a specific form of 4-phase pulsed forcing with suitably tuned choice of modulating operators to mimic the effects of curvature. The extent of curvature is found to be directly related to $omega^{-1}$ the time period of the driving field at the leading order. We apply the method to engineer the effects of curved background space. We find that the imprint of curvilinear geometry modifies the electronic properties, such as LDOS, significantly. We suggest that this method shall be useful in studying the response of various properties of such systems to non-trivial geometry without requiring any actual physical deformations.
57 - C. Wurl , H. Fehske 2018
The inelastic scattering and conversion process between photons and phonons by laser-driven quantum dots is analyzed for a honeycomb array of optomechanical cells. Using Floquet theory for an effective two-level system, we solve the related time-dependent scattering problem, beyond the standard rotating-wave approximation approach, for a plane Dirac-photon wave hitting a cylindrical oscillating barrier that couples the radiation field to the vibrational degrees of freedom. We demonstrate different scattering regimes and discuss the formation of polaritonic quasiparticles. We show that sideband-scattering becomes important when the energies of the sidebands are located in the vicinity of avoided crossings of the quasienergy bands. The interference of Floquet states belonging to different sidebands causes a mixing of long-wavelength (quantum) and short-wavelength (quasiclassical) behavior, making it possible to use the oscillating quantum dot as a kind of transistor for light and sound. We comment under which conditions the setup can be utilized to observe zitterbewegung.
We extend the notion of fragile topology to periodically-driven systems. We demonstrate driving-induced fragile topology in two different models, namely, the Floquet honeycomb model and the Floquet $pi$-flux square-lattice model. In both cases, we discover a rich phase diagram that includes Floquet fragile topological phases protected by crystalline rotation or mirror symmetries, Floquet Chern insulators, and trivial atomic phases, with distinct boundary features. Remarkably, the transitions between different phases can be feasibly achieved by simply tuning the driving amplitudes, which is a unique feature of driving-enabled topological phenomena. Moreover, corner-localized fractional charges are identified as a ``smoking-gun signal of fragile topology in our systems. Our work paves the way for studying and realizing fragile topology in Floquet systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا