No Arabic abstract
Optical trapping is an indispensable tool in physics and the life sciences. However, there is a clear trade off between the size of a particle to be trapped, its spatial confinement, and the intensities required. This is due to the decrease in optical response of smaller particles and the diffraction limit that governs the spatial variation of optical fields. It is thus highly desirable to find techniques that surpass these bounds. Recently, a number of experiments using nanophotonic cavities have observed a qualitatively different trapping mechanism described as self-induced back-action trapping (SIBA). In these systems, the particle motion couples to the resonance frequency of the cavity, which results in a strong interplay between the intra-cavity field intensity and the forces exerted. Here, we provide a theoretical description that for the first time captures the remarkable range of consequences. In particular, we show that SIBA can be exploited to yield dynamic reshaping of trap potentials, strongly sub-wavelength trap features, and significant reduction of intensities seen by the particle, which should have important implications for future trapping technologies
We propose a three-mode optomechanical system to realize optical nonreciprocal transmission with unidirectional amplification, where the system consists of two coupled cavities and one mechanical resonator which interacts with only one of the cavities. Additionally, the optical gain is introduced into the optomechanical cavity. It is found that for a strong optical input, the optical transmission coefficient can be greatly amplified in a particular direction and suppressed in the opposite direction. The expressions of the optimal transmission coefficient and the corresponding isolation ratio are given analytically. Our results pave a way to design high-quality nonreciprocal devices based on optomechanical systems.
We describe the back action of microwave-photon detection via a Josephson photomultiplier (JPM), a superconducting qubit coupled strongly to a high-quality microwave cavity. The back action operator depends qualitatively on the duration of the measurement interval, resembling the regular photon annihilation operator at short interaction times and approaching a variant of the photon subtraction operator at long times. The optimal operating conditions of the JPM differ from those considered optimal for processing and storing of quantum information, in that a short $T_2$ of the JPM suppresses the cavity dephasing incurred during measurement. Understanding this back action opens the possibility to perform multiple JPM measurements on the same state, hence performing efficient state tomography.
We investigate theoretically the effects of vacuum-induced coherence (VIC) on magneto-optical rotation (MOR). We carry out a model study to show that VIC in the presence of a control laser and a magnetic field can lead to large enhancement in the rotation of the plane of polarization of a linearly polarized weak laser with vanishing circular dichroism. This effect can be realized in cold molecular gases and may be used as a sensitive probe for VIC. Such a large MOR angle can also be used to detect weak magnetic field with large measurement sensitivity.
We study the influence of photons on the dynamics and the ground state of the atoms in a Bosonic Josephson junction inside an optical resonator. The system is engineered in such a way that the atomic tunneling can be tuned by changing the number of photons in the cavity. In this setup the cavity photons are a new means of control, which can be utilized both in inducing self-trapping solutions and in driving the crossover of the ground state from an atomic coherent state to a Schrodingers cat state. This is achieved, for suitable setup configurations, with interatomic interactions weaker than those required in the absence of cavity. This is corroborated by the study of the entanglement entropy. In the presence of a laser, this quantum indicator attains its maximum value (which marks the formation of the cat-like state and, at a semiclassical level, the onset of self-trapping) for attractions smaller than those of the bare junction.
We analyze the properties of a pulsed Coherent Population Trapping protocol that uses a controlled decay from the excited state in a $Lambda$-level scheme. We study this problem analytically and numerically and find regimes where narrow transmission, absorption, or fluorescence spectral lines occur. We then look for optimal frequency measurements using these spectral features by computing the Allan deviation in the presence of ground state decoherence and show that the protocol is on a par with Ramsey-CPT. We discuss possible implementations with ensembles of alkali atoms and single ions and demonstrate that typical pulsed-CPT experiments that are realized on femto-second time-scales can be implemented on micro-seconds time-scales using this scheme.