Do you want to publish a course? Click here

Optimal unidirectional amplification induced by optical gain in optomechanical systems

69   0   0.0 ( 0 )
 Added by Luning Song
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a three-mode optomechanical system to realize optical nonreciprocal transmission with unidirectional amplification, where the system consists of two coupled cavities and one mechanical resonator which interacts with only one of the cavities. Additionally, the optical gain is introduced into the optomechanical cavity. It is found that for a strong optical input, the optical transmission coefficient can be greatly amplified in a particular direction and suppressed in the opposite direction. The expressions of the optimal transmission coefficient and the corresponding isolation ratio are given analytically. Our results pave a way to design high-quality nonreciprocal devices based on optomechanical systems.



rate research

Read More

We propose to create optical nonreciprocity in a three-mode optomechanical system comprising one mechanical and two optical modes, where the mechanical mode is coupled with only one of the optical modes. The optical nonreciprocal response of the system is based on the nonlinearity induced by the optomechanical interaction. However, nonlinearity is a necessary but not a sufficient condition for observing nonreciprocity. Another necessary condition for nonreciprocal response of the system to a classical driving field is demonstrated analytically. The effects of the parameters on the nonreciprocal response of the system are discussed numerically. The three-mode optomechanical system provides a platform to realize nonreciprocity for strong optical signal fields.
71 - X. Z. Zhang , Lin Tian , 2018
We study an optomechanical transistor, where an input field can be transferred and amplified unidirectionally in a cyclic three-mode optomechanical system. In this system, the mechanical resonator is coupled simultaneously to two cavity modes. We show that it only requires a finite mechanical gain to achieve the nonreciprocal amplification. Here the nonreciprocity is caused by the phase difference between the linearized optomechanical couplings that breaks the time-reversal symmetry of this system. The amplification arises from the mechanical gain, which provides an effective phonon bath that pumps the mechanical mode coherently. This effect is analogous to the stimulated emission of atoms, where the probe field can be amplified when its frequency is in resonance with that of the anti-Stokes transition. We show that by choosing optimal parameters, this optomechanical transistor can reach perfect unidirectionality accompanied with strong amplification. In addition, the presence of the mechanical gain can result in ultra-long delay in the phase of the probe field, which provides an alternative to controlling light transport in optomechanical systems.
Optical trapping is an indispensable tool in physics and the life sciences. However, there is a clear trade off between the size of a particle to be trapped, its spatial confinement, and the intensities required. This is due to the decrease in optical response of smaller particles and the diffraction limit that governs the spatial variation of optical fields. It is thus highly desirable to find techniques that surpass these bounds. Recently, a number of experiments using nanophotonic cavities have observed a qualitatively different trapping mechanism described as self-induced back-action trapping (SIBA). In these systems, the particle motion couples to the resonance frequency of the cavity, which results in a strong interplay between the intra-cavity field intensity and the forces exerted. Here, we provide a theoretical description that for the first time captures the remarkable range of consequences. In particular, we show that SIBA can be exploited to yield dynamic reshaping of trap potentials, strongly sub-wavelength trap features, and significant reduction of intensities seen by the particle, which should have important implications for future trapping technologies
We investigate theoretically the effects of vacuum-induced coherence (VIC) on magneto-optical rotation (MOR). We carry out a model study to show that VIC in the presence of a control laser and a magnetic field can lead to large enhancement in the rotation of the plane of polarization of a linearly polarized weak laser with vanishing circular dichroism. This effect can be realized in cold molecular gases and may be used as a sensitive probe for VIC. Such a large MOR angle can also be used to detect weak magnetic field with large measurement sensitivity.
It has been predicted and experimentally demonstrated that by injecting squeezed light into an optomechanical device it is possible to enhance the precision of a position measurement. Here, we present a fundamentally different approach where the squeezing is created directly inside the cavity by a nonlinear medium. Counterintuitively, the enhancement of the signal to noise ratio works by de-amplifying precisely the quadrature that is sensitive to the mechanical motion without losing quantum information. This enhancement works for systems with a weak optomechanical coupling and/or strong mechanical damping. This could allow for larger mechanical bandwidth of quantum limited detectors based on optomechanical devices. Our approach can be straightforwardly extended to Quantum Non Demolition (QND) qubit detection.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا