Do you want to publish a course? Click here

The 106Cd(alpha,alpha)106Cd elastic scattering in a wide energy range for gamma-process studies

201   0   0.0 ( 0 )
 Added by Gabor Kiss Dr
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

Alpha elastic scattering angular distributions of the 106Cd(alpha,alpha)106Cd reaction were measured at three energies around the Coulomb barrier to provide a sensitive test for the alpha + nucleus optical potential parameter sets. Furthermore, the new high precision angular distributions, together with the data available from the literature were used to study the energy dependence of the locally optimized {alpha}+nucleus optical potential in a wide energy region ranging from E_Lab = 27.0 MeV down to 16.1 MeV. The potentials under study are a basic prerequisite for the prediction of alpha-induced reaction cross sections and thus, for the calculation of stellar reaction rates used for the astrophysical gamma process. Therefore, statistical model predictions using as input the optical potentials discussed in the present work are compared to the available 106Cd + alpha cross section data.



rate research

Read More

The 106Cd(alpha,gamma)110Sn reaction cross section has been measured in the energy range of the Gamow window for the astrophysical p-process scenario. The cross sections for 106Cd(alpha,n)109Sn and for 106Cd(alpha,p)109In below the (alpha,n) threshold have also been determined. The results are compared with predictions of the statistical model code NON-SMOKER using different input parameters. The comparison shows that a discrepancy for 106Cd(alpha,gamma)110Sn when using the standard optical potentials can be removed with a different alpha+106Cd potential. Some astrophysical implications are discussed.
105 - G.G.Kiss , P. Mohr , Zs. Fulop 2013
The $gamma$ process in supernova explosions is thought to explain the origin of proton-rich isotopes between Se and Hg, the so-called $p$ nuclei. The majority of the reaction rates for $gamma$ process reaction network studies has to be predicted in Hauser-Feshbach statistical model calculations using global optical potential parameterizations. While the nucleon+nucleus optical potential is fairly known, for the $alpha$+nucleus optical potential several different parameterizations exist and large deviations are found between the predictions calculated using different parameter sets. By the measurement of elastic $alpha$-scattering angular distributions at energies around the Coulomb barrier a comprehensive test for the different global $alpha$+nucleus optical potential parameter sets is provided. Between 20$^{circ}$ and 175$^{circ}$ complete elastic alpha scattering angular distributions were measured on the $^{113}$In textit{p} nucleus with high precision at E$_{c.m.}$ = 15.59 and 18.82 MeV. The elastic scattering cross sections of the $^{113}$In($alpha$,$alpha$)$^{113}$In reaction were measured for the first time at energies close to the astrophysically relevant energy region. The high precision experimental data were used to evaluate the predictions of the recent global and regional $alpha$+nucleus optical potentials. Parameters for a local $alpha$+nucleus optical potential were derived from the measured angular distributions. Predictions for the reaction cross sections of $^{113}$In($alpha,gamma$)$^{117}$Sb and $^{113}$In($alpha$,n)$^{116}$Sb at astrophysically relevant energies were given using the global and local optical potential parameterizations.
149 - G. G. Kiss , P. Mohr , Zs. Fulop 2013
The elastic scattering cross sections for the reactions $^{110,116}$Cd($alpha,alpha$)$^{110,116}$Cd at energies above and below the Coulomb barrier are presented to provide a sensitive test for the alpha-nucleus optical potential parameter sets. Additional constraints for the optical potential are taken from the analysis of elastic scattering excitation functions at backward angles which are available in literature. Moreover, the variation of the elastic alpha scattering cross sections along the $Z = 48$ isotopic and $N = 62$ isotonic chain is investigated by the study of the ratios of the of $^{106,110,116}$Cd($alpha,alpha$)$^{106,110,116}$Cd scattering cross sections at E$_{c.m.} approx$ 15.6 and 18.8 MeV and the ratio of the $^{110}$Cd($alpha,alpha$)$^{110}$Cd and $^{112}$Sn($alpha,alpha$)$^{112}$Sn reaction cross sections at E$_{c.m.} approx$ 18.8 MeV, respectively. These ratios are sensitive probes for the alpha-nucleus optical potential parameterizations. The potentials under study are a basic prerequisite for the prediction of $alpha$-induced reaction cross sections, e.g. for the calculation of stellar reaction rates in the astrophysical $p$- or $gamma$-process.
94 - P. Belli 2011
A search for the double beta processes in 106Cd was carried out at the Gran Sasso National Laboratories of the INFN (Italy) with the help of a 106CdWO4 crystal scintillator (215 g) enriched in 106Cd up to 66%. After 6590 h of data taking, new improved half-life limits on the double beta processes in 106Cd were established at the level of 10^{19}-10^{21} yr; in particular, T_{1/2}(2 u epsilon beta^+) > 2.1 10^{20} yr, T_{1/2}(2 u 2beta^+) > 4.3 10^{20} yr, and T_{1/2}(0 u 2epsilon) > 1.0 10^{21} yr. The resonant neutrinoless double electron captures to the 2718 keV, 2741 keV and 2748 keV excited states of 106Pd are restricted to T_{1/2}(0 u 2K) > 4.3 10^{20} yr, T_{1/2}(0 u KL1) > 9.5 10^{20} yr and T_{1/2}(0 u KL3) > 4.3 10^{20} yr, respectively (all limits at 90% C.L.). A possible resonant enhancement of the 0 u 2epsilon processes is estimated in the framework of the QRPA approach. The radioactive contamination of the 106CdWO4 crystal scintillator is reported.
103 - D. Kahl , H. Yamaguchi , S. Kubono 2017
Background: Type I x-ray bursts are the most frequent thermonuclear explosions in the galaxy, resulting from thermonuclear runaway on the surface of an accreting neutron star. The $^{30}$S($alpha$,p) reaction plays a critical role in burst models, yet insufficient experimental information is available to calculate a reliable, precise rate for this reaction. Purpose: Our measurement was conducted to search for states in $^{34}$Ar and determine their quantum properties. In particular, natural-parity states with large $alpha$-decay partial widths should dominate the stellar reaction rate. Method: We performed the first measurement of $^{30}$S+$alpha$ resonant elastic scattering up to a center-of-mass energy of 5.5 MeV using a radioactive ion beam. The experiment utilized a thick gaseous active target system and silicon detector array in inverse kinematics. Results: We obtained an excitation function for $^{30}$S($alpha$,$alpha$) near $150^{circ}$ in the center-of-mass frame. The experimental data were analyzed with an $R$-Matrix calculation, and we observed three new resonant patterns between 11.1 and 12.1 MeV, extracting their properties of resonance energy, widths, spin, and parity. Conclusions: We calculated the resonant thermonuclear reaction rate of $^{30}$S($alpha$,p) based on all available experimental data of $^{34}$Ar and found an upper limit about one order of magnitude larger than a rate determined using a statistical model. The astrophysical impact of these two rates has been investigated through one-zone postprocessing type I x-ray burst calculations. We find that our new upper limit for the $^{30}$S($alpha$,p)$^{33}$Cl rate significantly affects the predicted nuclear energy generation rate during the burst.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا