Do you want to publish a course? Click here

First measurement of $^{30}$S+$alpha$ resonant elastic scattering for the $^{30}$S($alpha$,p) reaction rate

104   0   0.0 ( 0 )
 Added by D. Kahl
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

Background: Type I x-ray bursts are the most frequent thermonuclear explosions in the galaxy, resulting from thermonuclear runaway on the surface of an accreting neutron star. The $^{30}$S($alpha$,p) reaction plays a critical role in burst models, yet insufficient experimental information is available to calculate a reliable, precise rate for this reaction. Purpose: Our measurement was conducted to search for states in $^{34}$Ar and determine their quantum properties. In particular, natural-parity states with large $alpha$-decay partial widths should dominate the stellar reaction rate. Method: We performed the first measurement of $^{30}$S+$alpha$ resonant elastic scattering up to a center-of-mass energy of 5.5 MeV using a radioactive ion beam. The experiment utilized a thick gaseous active target system and silicon detector array in inverse kinematics. Results: We obtained an excitation function for $^{30}$S($alpha$,$alpha$) near $150^{circ}$ in the center-of-mass frame. The experimental data were analyzed with an $R$-Matrix calculation, and we observed three new resonant patterns between 11.1 and 12.1 MeV, extracting their properties of resonance energy, widths, spin, and parity. Conclusions: We calculated the resonant thermonuclear reaction rate of $^{30}$S($alpha$,p) based on all available experimental data of $^{34}$Ar and found an upper limit about one order of magnitude larger than a rate determined using a statistical model. The astrophysical impact of these two rates has been investigated through one-zone postprocessing type I x-ray burst calculations. We find that our new upper limit for the $^{30}$S($alpha$,p)$^{33}$Cl rate significantly affects the predicted nuclear energy generation rate during the burst.

rate research

Read More

The thermonuclear $^{30}$P($p,gamma$)$^{31}$S reaction rate is critical for modeling the final elemental and isotopic abundances of ONe nova nucleosynthesis, which affect the calibration of proposed nova thermometers and the identification of presolar nova grains, respectively. Unfortunately, the rate of this reaction is essentially unconstrained experimentally, because the strengths of key $^{31}$S proton capture resonance states are not known, largely due to uncertainties in their spins and parities. Using the $beta$ decay of $^{31}$Cl, we have observed the $beta$-delayed $gamma$ decay of a $^{31}$S state at $E_x = 6390.2(7)$ keV, with a $^{30}$P($p,gamma$)$^{31}$S resonance energy of $E_r = 259.3(8)$ keV, in the middle of the $^{30}$P($p,gamma$)$^{31}$S Gamow window for peak nova temperatures. This state exhibits isospin mixing with the nearby isobaric analog state (IAS) at $E_x = 6279.0(6)$ keV, giving it an unambiguous spin and parity of $3/2^+$ and making it an important $l = 0$ resonance for proton capture on $^{30}$P.
The production of 26 Al in massive stars is sensitive to the 23 Na(a,p) 26 Mg cross section. Recent experimental data suggest the currently recommended cross sections are underestimated by a factor of 40. We present here differential cross sections for the 23 Na(a,p) 26 Mg reaction measured in the energy range E c.m. = 1.7 - 2.5 MeV. Concurrent measurements of Rutherford scattering provide absolute normalisations which are independent of variations in target properties. Angular distributions were measured for both p 0 and p 1 permitting the determination of total cross sections. The results show no significant deviation from the statistical model calculations upon which the recommended rates are based. We therefore retain the previous recommendation without the increase in cross section and resulting stellar reaction rates of a factor of 40, impacting on the 26 Al yield from massive stars by more than a factor of three.
Short-lived radionuclides (SLRs) with half-lives less than 100 Myr are known to have existed around the time of the formation of the solar system around 4.5 billion years ago. Understanding the production sources for SLRs is important for improving our understanding of processes taking place just after solar system formation as well as their timescales. Early solar system models rely heavily on calculations from nuclear theory due to a lack of experimental data for the nuclear reactions taking place. In 2013, Bowers et al. measured ${}^{36}$Cl production cross sections via the ${}^{33}$S($alpha$,p) reaction and reported cross sections that were systematically higher than predicted by Hauser-Feshbach codes. Soon after, a paper by Peter Mohr highlighted the challenges the new data would pose to current nuclear theory if verified. The ${}^{33}$S($alpha$,p)${}^{36}$Cl reaction was re-measured at 5 energies between 0.78 MeV/A and 1.52 MeV/A, in the same range as measured by Bowers et al., and found systematically lower cross sections than originally reported, with the new results in good agreement with the Hauser-Feshbach code TALYS. Loss of Cl carrier in chemical extraction and errors in determination of reaction energy ranges are both possible explanations for artificially inflated cross sections measured in the previous work.
A current challenge for ab initio calculations is systems that contain large continuum contributions such as 8Be. We report on new measurements of radiative decay widths in this nucleus that test recent Greens function Monte Carlo calculations. Traditionally, {gamma} ray detectors have been utilized to measure the high energy photons from the 7Li(p, {gamma}){alpha}{alpha} reaction. However, due to the complicated response function of these detectors it has not yet been possible to extract the full {gamma} ray spectrum from this reaction. Here we present an alternative measurement using large area Silicon detectors to detect the two {alpha} particles, which provides a practically background free spectrum and retains good energy resolution. The resulting spectrum is analyzed using a many-level multi channel R-matrix parametrization. Improved values for the radiative widths are extracted from the R-matrix fit. We find evidence for significant non-resonant continuum contributions and tentative evidence for a broad 0+ resonance at 12 MeV.
The degree to which the (p,gamma) and (p,alpha) reactions destroy 18F at temperatures 1-4x10^8 K is important for understanding the synthesis of nuclei in nova explosions and for using the long-lived radionuclide 18F, a target of gamma-ray astronomy, as a diagnostic of nova mechanisms. The reactions are dominated by low-lying proton resonances near the 18F+p threshold (E_x=6.411 MeV in 19Ne). To gain further information about these resonances, we have used a radioactive 18F beam from the Holifield Radioactive Ion Beam Facility to selectively populate corresponding mirror states in 19F via the inverse d(18F,p)19F neutron transfer reaction. Neutron spectroscopic factors were measured for states in 19F in the excitation energy range 0-9 MeV. Widths for corresponding proton resonances in 19Ne were calculated using a Woods-Saxon potential. The results imply significantly lower 18F(p,gamma)19Ne and 18F(p,alpha)15O reaction rates than reported previously, thereby increasing the prospect of observing the 511-keV annihilation radiation associated with the decay of 18F in the ashes ejected from novae.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا