Do you want to publish a course? Click here

An Alternative Formation Model for Antideuterons from Dark Matter

140   0   0.0 ( 0 )
 Added by Are R. Raklev
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Antideuterons are a potential messenger for dark matter annihilation or decay in our own galaxy, with very low backgrounds expected from astrophysical processes. The standard coalescence model of antideuteron formation, while simple to implement, is shown to be under considerable strain by recent data from the LHC. We suggest a new empirically based model, with only one free parameter, which is better able to cope with these data, and we explore the consequences of the model for dark matter searches.



rate research

Read More

We study the possibility of improving the constraints on the lifetime of gravitino dark matter in scenarios with bilinear R-parity violation by estimating the amount of cosmic-ray antideuterons that can be produced in gravitino decays. Taking into account all different sources of theoretical uncertainties, we find that the margin of improvement beyond the limits already set by cosmic-ray antiproton data are quite narrow and unachievable for the next generation of experiments. However, we also identify more promising energy ranges for future experiments.
Low energy antideuteron detection presents a unique channel for indirect detection, targeting dark matter that annihilates into hadrons in a relatively background-free way. Since the idea was first proposed, many WIMP-type models have already been disfavored by direct detection experiments, and current constraints indicate that any thermal relic candidates likely annihilate through some hidden sector process. In this paper, we show that cosmic ray antideuteron detection experiments represent one of the best ways to search for hidden sector thermal relic dark matter, and in particular investigate a vector portal dark matter that annihilates via a massive dark photon. We find that the parameter space with thermal relic annihilation and $m_chi > m_{A} gtrsim 20 , mathrm{GeV}$ is largely unconstrained, and near future antideuteron experiment GAPS will be able to probe models in this space with $m_chi approx m_{A}$ up to masses of $O(100,mathrm{GeV})$. Specifically the dark matter models favored by the textit{Fermi} Galactic center excess is expected to be detected or constrained at the $5(3)-sigma$ level assuming a optimistic (conservative) propagation model.
This white paper describes the basic idea for indirect dark matter searches using antideuterons. Low energy antideuterons produced by dark matter annihilations/decays provide an attractive dark matter signature, due to the low astrophysical background. The current and future experiments have a strong potential to detect antideuterons from dark matter. They are complementary not only with each other, but also with other dark matter searches.
The eXciting Dark Matter (XDM) model was proposed as a mechanism to efficiently convert the kinetic energy (in sufficiently hot environments) of dark matter into e+e- pairs. The standard scenario invokes a doublet of nearly degenerate DM states, and a dark force to mediate a large upscattering cross section between the two. For heavy ($sim TeV$) DM, the kinetic energy of WIMPs in large (galaxy-sized or larger) halos is capable of producing low-energy positrons. For lighter dark matter, this is kinematically impossible, and the unique observable signature becomes an X-ray line, arising from $chi chi rightarrow chi^* chi^*$, followed by $chi^* rightarrow chi gamma$. This variant of XDM is distinctive from other DM X-ray scenarios in that it tends to be most present in more massive, hotter environments, such as clusters, rather than nearby dwarfs, and has different dependencies from decaying models. We find that it is capable of explaining the recently reported X-ray line at 3.56 keV. For very long lifetimes of the excited state, primordial decays can explain the signal without the presence of upscattering. Thermal models freeze-out as in the normal XDM setup, via annihilations to the light boson $phi$. For suitable masses the annihilation $chi chi rightarrow phi phi$ followed by $phi rightarrow SM$ can explain the reported gamma-ray signature from the galactic center. Direct detection is discussed, including the possibility of explaining DAMA via the Luminous dark matter approach. Quite generally, the proximity of the 3.56 keV line to the energy scale of DAMA motivates a reexamination of electromagnetic explanations. Other signals, including lepton jets and the modification of cores of dwarf galaxies are also considered.
106 - Mathias Pierre 2019
One of the most puzzling problems of modern physics is the identification of the nature a non-relativistic matter component present in the universe, contributing to more than 25$%$ of the total energy budget, known as Dark Matter. Weakly Interacting Massive Particles (WIMPs) are among the best motivated dark matter candidates. However, in light of non conclusive detection signals and strong constraints from collider, direct and indirect detection experiments, this thesis presents constraints on several realizations of the WIMP paradigm in the context of simplified dark matter models. More elaborated models considering extended gauge structures are discussed further on, such as constructions involving generalized Chern-Simons couplings and a specific WIMP scenario motivated by recently observed flavour anomalies related to the $R_{K^{(*)}}$ observable. The second part of this thesis is devoted to the discussion of an alternative dark matter thermal production mechanism where an explicit realization of the Strongly Interacting Massive Particles (SIMPs) paradigm is discussed in the context of a non-Abelian hidden gauge structure. In a last part, the possibility of producing non-thermally a dark matter component via the freeze-in mechanism was investigated and the strong impact of the post-inflationary reaheating stage of the universe on such constructions illustrated by the specific case where dark matter density production is mediated by a heavy spin-2 field in addition to the standard graviton.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا