Do you want to publish a course? Click here

Searching for Dark Photon Dark Matter with Cosmic Ray Antideuterons

204   0   0.0 ( 0 )
 Added by Weishuang Linda Xu
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Low energy antideuteron detection presents a unique channel for indirect detection, targeting dark matter that annihilates into hadrons in a relatively background-free way. Since the idea was first proposed, many WIMP-type models have already been disfavored by direct detection experiments, and current constraints indicate that any thermal relic candidates likely annihilate through some hidden sector process. In this paper, we show that cosmic ray antideuteron detection experiments represent one of the best ways to search for hidden sector thermal relic dark matter, and in particular investigate a vector portal dark matter that annihilates via a massive dark photon. We find that the parameter space with thermal relic annihilation and $m_chi > m_{A} gtrsim 20 , mathrm{GeV}$ is largely unconstrained, and near future antideuteron experiment GAPS will be able to probe models in this space with $m_chi approx m_{A}$ up to masses of $O(100,mathrm{GeV})$. Specifically the dark matter models favored by the textit{Fermi} Galactic center excess is expected to be detected or constrained at the $5(3)-sigma$ level assuming a optimistic (conservative) propagation model.



rate research

Read More

We study the possibility of improving the constraints on the lifetime of gravitino dark matter in scenarios with bilinear R-parity violation by estimating the amount of cosmic-ray antideuterons that can be produced in gravitino decays. Taking into account all different sources of theoretical uncertainties, we find that the margin of improvement beyond the limits already set by cosmic-ray antiproton data are quite narrow and unachievable for the next generation of experiments. However, we also identify more promising energy ranges for future experiments.
The GAPS experiment is foreseen to carry out a dark matter search by measuring low-energy cosmic-ray antideuterons and antiprotons with a novel detection approach. It will provide a new avenue to access a wide range of different dark matter models and masses from about 10GeV to 1TeV. The theoretically predicted antideuteron flux resulting from secondary interactions of primary cosmic rays is very low. Well-motivated theories beyond the Standard Model contain viable dark matter candidates, which could lead to a significant enhancement of the antideuteron flux due to annihilation or decay of dark matter particles. This flux contribution is believed to be especially large at low energies, which leads to a high discovery potential for GAPS. The GAPS low-energy antiproton search will provide some of the most stringent constraints on ~30GeV dark matter, will provide the best limits on primordial black hole evaporation on galactic length scales, and explore new discovery space in cosmic-ray physics. GAPS is designed to achieve its goals via long duration balloon flights at high altitude in Antarctica. The detector itself will consist of 10 planes of Si(Li) solid state detectors and a surrounding time-of-flight system. Antideuterons and antiprotons will be slowed down in the Si(Li) material, replace a shell electron and form an excited exotic atom. The atom will be deexcited by characteristic X-ray transitions and will end its life by the formation of an annihilation pion/proton star. This unique event structure will deliver a nearly background free detection possibility.
132 - L. A. Dal , A. R. Raklev 2015
Antideuterons are a potential messenger for dark matter annihilation or decay in our own galaxy, with very low backgrounds expected from astrophysical processes. The standard coalescence model of antideuteron formation, while simple to implement, is shown to be under considerable strain by recent data from the LHC. We suggest a new empirically based model, with only one free parameter, which is better able to cope with these data, and we explore the consequences of the model for dark matter searches.
Recent years have seen increased theoretical and experimental effort towards the first-ever detection of cosmic-ray antideuterons, in particular as an indirect signature of dark matter annihilation or decay. In contrast to indirect dark matter searches using positrons, antiprotons, or gamma-rays, which suffer from relatively high and uncertain astrophysical backgrounds, searches with antideuterons benefit from very suppressed conventional backgrounds, offering a potential breakthrough in unexplored phase space for dark matter. This article is based on the first dedicated cosmic-ray antideuteron workshop, which was held at UCLA in June 2014. It reviews broad classes of dark matter candidates that result in detectable cosmic-ray antideuteron fluxes, as well as the status and prospects of current experimental searches. The coalescence model of antideuteron production and the influence of antideuteron measurements at particle colliders are discussed. This is followed by a review of the modeling of antideuteron propagation through the magnetic fields, plasma currents, and molecular material of our Galaxy, the solar system, the Earths geomagnetic field, and the atmosphere. Finally, the three ongoing or planned experiments that are sensitive to cosmic-ray antideuterons, BESS, AMS-02, and GAPS, are detailed. As cosmic-ray antideuteron detection is a rare event search, multiple experiments with orthogonal techniques and backgrounds are essential. Many theoretical and experimental groups have contributed to these studies over the last decade, this review aims to provide the first coherent discussion of the relevant dark matter theories that antideuterons probe, the challenges to predictions and interpretations of antideuteron signals, and the experimental efforts toward cosmic antideuteron detection.
Light non-relativistic components of the galactic dark matter halo elude direct detection constraints because they lack the kinetic energy to create an observable recoil. However, cosmic-rays can upscatter dark matter to significant energies, giving direct detection experiments access to previously unreachable regions of parameter-space at very low dark matter mass. In this work we extend the cosmic-ray dark matter formalism to models of inelastic dark matter and show that previously inaccessible regions of the mass-splitting parameter space can be probed. Conventional direct detection of non-relativistic halo dark matter is limited to mass splittings of $deltasim10~mathrm{keV}$ and is highly mass dependent. We find that including the effect of cosmic-ray upscattering can extend the reach to mass splittings of $deltasim100~mathrm{MeV}$ and maintain that reach at much lower dark matter mass.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا