Do you want to publish a course? Click here

Dark Matter phenomenology : from simplified WIMP models to refined alternative solutions

107   0   0.0 ( 0 )
 Added by Mathias Pierre
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

One of the most puzzling problems of modern physics is the identification of the nature a non-relativistic matter component present in the universe, contributing to more than 25$%$ of the total energy budget, known as Dark Matter. Weakly Interacting Massive Particles (WIMPs) are among the best motivated dark matter candidates. However, in light of non conclusive detection signals and strong constraints from collider, direct and indirect detection experiments, this thesis presents constraints on several realizations of the WIMP paradigm in the context of simplified dark matter models. More elaborated models considering extended gauge structures are discussed further on, such as constructions involving generalized Chern-Simons couplings and a specific WIMP scenario motivated by recently observed flavour anomalies related to the $R_{K^{(*)}}$ observable. The second part of this thesis is devoted to the discussion of an alternative dark matter thermal production mechanism where an explicit realization of the Strongly Interacting Massive Particles (SIMPs) paradigm is discussed in the context of a non-Abelian hidden gauge structure. In a last part, the possibility of producing non-thermally a dark matter component via the freeze-in mechanism was investigated and the strong impact of the post-inflationary reaheating stage of the universe on such constructions illustrated by the specific case where dark matter density production is mediated by a heavy spin-2 field in addition to the standard graviton.



rate research

Read More

We investigate a model in which Dark Matter is stabilized by means of a Z2 parity that results from the same non-abelian discrete flavor symmetry which accounts for the observed pattern of neutrino mixing. In our A4 example the standard model is extended by three extra Higgs doublets and the Z2 parity emerges as a remnant of the spontaneous breaking of A4 after electroweak symmetry breaking. We perform an analysis of the parameter space of the model consistent with electroweak precision tests, collider searches and perturbativity. We determine the regions compatible with the observed relic dark matter density and we present prospects for detection in direct as well as indirect Dark Matter search experiments.
One of the most promising strategies to identify the nature of dark matter consists in the search for new particles at accelerators and with so-called direct detection experiments. Working within the framework of simplified models, and making use of machine learning tools to speed up statistical inference, we address the question of what we can learn about dark matter from a detection at the LHC and a forthcoming direct detection experiment. We show that with a combination of accelerator and direct detection data, it is possible to identify newly discovered particles as dark matter, by reconstructing their relic density assuming they are weakly interacting massive particles (WIMPs) thermally produced in the early Universe, and demonstrating that it is consistent with the measured dark matter abundance. An inconsistency between these two quantities would instead point either towards additional physics in the dark sector, or towards a non-standard cosmology, with a thermal history substantially different from that of the standard cosmological model.
We enumerate the set of simplified models which match onto the complete set of gauge invariant effective operators up to dimension six describing interactions of a singlet-like Majorana fermion dark matter with the standard model. Tree level matching conditions for each case are worked out in the large mediator mass limit, defining a one to one correspondence between the effective operator coefficients and the simplified model parameters for weakly interacting models. Utilizing such a mapping, we compute the dark matter annihilation rate in the early universe, as well as other low-energy observables like nuclear recoil rates using the effective operators, while the simplified models are used to compute the dark matter production rates at high energy colliders like LEP, LHC and future lepton colliders. Combining all relevant constraints with a profile likelihood analysis, we then discuss the currently allowed parameter regions and prospects for future searches in terms of the effective operator parameters, reducing the model dependence to a minimal level. In the parameter region where such a model-independent analysis is applicable, and leaving aside the special dark matter mass regions where the annihilation proceeds through an s-channel Z or Higgs boson pole, the current constraints allow effective operator suppression scales ($Lambda$) of the order of a few hundred GeV for dark matter masses $m_chi >$ 20 GeV at $95%$ C.L., while the maximum allowed scale is around $3$ TeV for $m_chi sim mathcal{O}(1,{rm TeV})$. An estimate of the future reach of ton-scale direct detection experiments and planned electron-positron colliders show that most of the remaining regions can be probed, apart from dark matter masses near half of the Z-boson mass (with $500,{rm GeV} < Lambda < 2,{rm TeV} $) and those beyond the kinematic reach of the future lepton colliders.
We propose a systematic programme to search for long-lived neutral particle signatures through a minimal set of displaced searches requiring significant missing transverse energy (dMETs). Our approach is to extend the well-established dark matter simplified models to include displaced vertices. The dark matter simplified models are used to describe the primary production vertex. A displaced secondary vertex, characterised by the mass of the long-lived particle and its lifetime, is added for the displaced signature. We show how these models can be motivated by, and mapped onto, complete models such as gauge-mediated SUSY breaking and models of neutral naturalness. We also outline how this approach may be used to extend other simplified models to incorporate displaced signatures and to characterise searches for long-lived charged particles. Displaced vertices are a striking signature with virtually no backgrounds from SM processes, and thus provide an excellent target for the high-luminosity run of the Large Hadron Collider. The proposed models and searches provide a first step towards a systematic broadening of the displaced dark matter search programme.
195 - Kenichi Saikawa 2017
The axion arises in well-motivated extensions of the Standard Model of particle physics and is regarded as an alternative to the weakly interacting massive particle paradigm to explain the nature of dark matter. In this contribution, we review theoretical aspects of dark matter axions, particularly focusing on recent developments in the estimation of their relic abundance. A closer look at their non-thermal production mechanisms in the early universe reveals the possibility of explaining the observed dark matter abundance in various mass ranges. The mass ranges predicted in various cosmological scenarios are briefly summarized.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا