Do you want to publish a course? Click here

The twisted dark matter halo of the Milky Way

113   0   0.0 ( 0 )
 Added by Shi Shao
 Publication date 2020
  fields Physics
and research's language is English
 Authors Shi Shao




Ask ChatGPT about the research

We analyse systems analogous to the Milky Way (MW) in the EAGLE cosmological hydrodynamics simulation in order to deduce the likely structure of the MWs dark matter halo. We identify MW-mass haloes in the simulation whose satellite galaxies have similar kinematics and spatial distribution to those of the bright satellites of the MW, specifically systems in which the majority of the satellites (8 out of 11) have nearly co-planar orbits that are also perpendicular to the central stellar disc. We find that the normal to the common orbital plane of the co-planar satellites is well aligned with the minor axis of the host dark matter halo, with a median misalignment angle of only $17.3^circ$. Based on this result, we infer that the minor axis of the Galactic dark matter halo points towards $(l,b)=(182^circ,-2^circ)$, with an angular uncertainty at the 68 and 95 percentile confidence levels of 22$^circ$ and 43$^circ$ respectively. Thus, the inferred minor axis of the MW halo lies in the plane of the stellar disc. The halo, however, is not homologous and its flattening and orientation vary with radius. The inner parts of the halo are rounder than the outer parts and well-aligned with the stellar disc (that is the minor axis of the halo is perpendicular to the disc). Further out, the halo twists and the minor axis changes direction by $90^circ$. This twist occurs over a very narrow radial range and reflects variations in the filamentary network along which mass was accreted into the MW.



rate research

Read More

200 - Wenting Wang 2015
The mass of the dark matter halo of the Milky Way can be estimated by fitting analytical models to the phase-space distribution of dynamical tracers. We test this approach using realistic mock stellar halos constructed from the Aquarius N-body simulations of dark matter halos in the $Lambda$CDM cosmology. We extend the standard treatment to include a Navarro-Frenk-White (NFW) potential and use a maximum likelihood method to recover the parameters describing the simulated halos from the positions and velocities of their mock halo stars. We find that the estimate of halo mass is highly correlated with the estimate of halo concentration. The best-fit halo masses within the virial radius, $R_{200}$, are biased, ranging from a 40% underestimate to a 5% overestimate in the best case (when the tangential velocities of the tracers are included). There are several sources of bias. Deviations from dynamical equilibrium can potentially cause significant bias; deviations from spherical symmetry are relatively less important. Fits to stars at different galactocentric radii can give different mass estimates. By contrast, the model gives good constraints on the mass within the half-mass radius of tracers even when restricted to tracers within 60kpc. The recovered velocity anisotropies of tracers, $beta$, are biased systematically, but this does not affect other parameters if tangential velocity data are used as constraints.
265 - M. Kuhlen 2009
The unambiguous detection of Galactic dark matter annihilation would unravel one of the most outstanding puzzles in particle physics and cosmology. Recent observations have motivated models in which the annihilation rate is boosted by the Sommerfeld effect, a non-perturbative enhancement arising from a long range attractive force. Here we apply the Sommerfeld correction to Via Lactea II, a high resolution N-body simulation of a Milky-Way-size galaxy, to investigate the phase-space structure of the Galactic halo. We show that the annihilation luminosity from kinematically cold substructure can be enhanced by orders of magnitude relative to previous calculations, leading to the prediction of gamma-ray fluxes from up to hundreds of dark clumps that should be detectable by the Fermi satellite.
Cold Dark Matter (CDM) theory, a pillar of modern cosmology and astrophysics, predicts the existence of a large number of starless dark matter halos surrounding the Milky Way (MW). However, clear observational evidence of these dark substructures remains elusive. Here, we present a detection method based on the small, but detectable, velocity changes that an orbiting substructure imposes on the stars in the MW disk. Using high-resolution numerical simulations we estimate that the new space telescope Gaia should detect the kinematic signatures of a few starless substructures provided the CDM paradigm holds. Such a measurement will provide unprecedented constraints on the primordial matter power spectrum at low-mass scales and offer a new handle onto the particle physics properties of dark matter.
This paper presents an alternative scenario to explain the observed properties of the Milky Way dwarf Spheroidals (MW dSphs). We show that instead of resulting from large amounts of dark matter (DM), the large velocity dispersions observed along their lines of sight can be entirely accounted for by dynamical heating of DM-free systems resulting from MW tidal shocks. Such a regime is expected if the progenitors of the MW dwarfs are infalling gas-dominated galaxies. In this case, gas lost through ram-pressure leads to a strong decrease of self-gravity, a phase during which stars can radially expand, while leaving a gas-free dSph in which tidal shocks can easily develop. The DM content of dSphs is widely derived from the measurement of the dSphs self-gravity acceleration projected along the line of sight. We show that the latter strongly anti-correlates with the dSph distance from the MW, and that it is matched in amplitude by the acceleration caused by MW tidal shocks on DM-free dSphs. If correct, this implies that the MW dSphs would have negligible DM content, putting in question, e.g., their use as targets for DM direct searches, or our understanding of the Local Group mass assembly history. Most of the progenitors of the MW dSphs are likely extremely tiny dIrrs, and deeper observations and more accurate modeling are necessary to infer their properties as well as to derive star formation histories of the faintest dSphs.
80 - Jesus Zavala 2019
Milky Way (MW) satellites reside within dark matter (DM) subhalos with a broad distribution of circular velocity profiles. This diversity is enhanced with the inclusion of ultra-faint satellites, which seemingly have very high DM densities, albeit with large systematic uncertainties. We argue that if confirmed, this large diversity in the MW satellite population poses a serious test for the structure formation theory with possible implications for the DM nature. For the Cold Dark Matter model, the diversity might be a signature of the combined effects of subhalo tidal disruption by the MW disk and strong supernova feedback. For models with a dwarf-scale cutoff in the power spectrum, the diversity is a consequence of the lower abundance of dwarf-scale halos. This diversity is most challenging for Self-Interacting Dark Matter (SIDM) models with cross sections $sigma/m_chigtrsim1~$cm$^2$g$^{-1}$ where subhalos have too low densities to explain the ultra-faint galaxies. We propose a novel solution to explain the diversity of MW satellites based on the gravothermal collapse of SIDM haloes. This solution requires a velocity-dependent cross section that predicts a bimodal distribution of cuspy dense (collapsed) subhaloes consistent with the ultra-faint satellites, and cored lower density subhaloes consistent with the brighter satellites.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا