Do you want to publish a course? Click here

Critical points via monodromy and local methods

258   0   0.0 ( 0 )
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

In many areas of applied mathematics and statistics, it is a fundamental problem to find the best representative of a model by optimizing an objective function. This can be done by determining critical points of the objective function restricted to the model. We compile ideas arising from numerical algebraic geometry to compute the critical points of an objective function. Our method consists of using numerical homotopy continuation and a monodromy action on the total critical space to compute all of the complex critical points of an objective function. To illustrate the relevance of our method, we apply it to the Euclidean distance function to compute ED-degrees and the likelihood function to compute maximum likelihood degrees.



rate research

Read More

197 - Fabrizio Catanese 2015
We discuss the history of the monodromy theorem, starting from Weierstrass, and the concept of monodromy group. From this viewpoint we compare then the Weierstrass , the Legendre and other normal forms for elliptic curves, explaining their geometric meaning and distinguishing them by their stabilizer in P SL(2,Z) and their monodromy. Then we focus on the birth of the concept of the Jacobian variety, and the geometrization of the theory of Abelian functions and integrals. We end illustrating the methods of complex analysis in the simplest issue, the difference equation $f(z) = g(z+1) - g(z)$ on $mathbb C$.
Given a `cost functional $F$ on paths $gamma$ in a domain $Dsubsetmathbb{R}^d$, in the form $F(gamma) = int_0^1 f(gamma(t),dotgamma(t))dt$, it is of interest to approximate its minimum cost and geodesic paths. Let $X_1,ldots, X_n$ be points drawn independently from $D$ according to a distribution with a density. Form a random geometric graph on the points where $X_i$ and $X_j$ are connected when $0<|X_i - X_j|<epsilon$, and the length scale $epsilon=epsilon_n$ vanishes at a suitable rate. For a general class of functionals $F$, associated to Finsler and other distances on $D$, using a probabilistic form of Gamma convergence, we show that the minimum costs and geodesic paths, with respect to types of approximating discrete `cost functionals, built from the random geometric graph, converge almost surely in various senses to those corresponding to the continuum cost $F$, as the number of sample points diverges. In particular, the geodesic path convergence shown appears to be among the first results of its kind.
The monodromy group is an invariant for parameterized systems of polynomial equations that encodes structure of the solutions over the parameter space. Since the structure of real solutions over real parameter spaces are of interest in many applications, real monodromy action is investigated here. A naive extension of monodromy action from the complex numbers to the real numbers is shown to be very restrictive. Therefore, we define a real monodromy structure which need not be a group but contains tiered characteristics about the real solutions. This real monodromy structure is applied to an example in kinematics which summarizes all the ways performing loops parameterized by leg lengths can cause a mechanism to change poses.
57 - Ivan Smith 2019
We show the cohomological monodromy for the universal family of smooth cubic threefolds does not factor through the genus five mapping class group. This gives a geometric group theory perspective on the well-known irrationality of cubic threefolds.
We prove that $p$-determinants of a certain class of differential operators can be lifted to power series over $mathbb{Q}$. We compute these power series in terms of monodromy of the corresponding differential operators.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا