Do you want to publish a course? Click here

p-Determinants and monodromy of differential operators

81   0   0.0 ( 0 )
 Added by Alexander Odesskii
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We prove that $p$-determinants of a certain class of differential operators can be lifted to power series over $mathbb{Q}$. We compute these power series in terms of monodromy of the corresponding differential operators.



rate research

Read More

139 - Yuri G. Zarhin 2014
We compute the Galois groups for a certain class of polynomials over the the field of rational numbers that was introduced by S. Mori and study the monodromy of corresponding hyperelliptic jacobians.
We consider the Weyl algebra A (=A_n(k)) and its Rees algebra B with respect to the Bernstein filtration. The homogenisation of a differential operator in A is an element in B. In this paper we establish the validity of the division theorem for homogenized differential operators and Buchbergers algorithm for computing Groebner (or standard) bases in B. As an application we describe an algorithm for computing delta-standard bases in the Weyl algebra A.
A theorem of N. Katz cite{Ka} p.45, states that an irreducible differential operator $L$ over a suitable differential field $k$, which has an isotypical decomposition over the algebraic closure of $k$, is a tensor product $L=Motimes_k N$ of an absolutely irreducible operator $M$ over $k$ and an irreducible operator $N$ over $k$ having a finite differential Galois group. Using the existence of the tensor decomposition $L=Motimes N$, an algorithm is given in cite{C-W}, which computes an absolutely irreducible factor $F$ of $L$ over a finite extension of $k$. Here, an algorithmic approach to finding $M$ and $N$ is given, based on the knowledge of $F$. This involves a subtle descent problem for differential operators which can be solved for explicit differential fields $k$ which are $C_1$-fields.
83 - Daniel Barlet 2019
Let s 1 ,. .. , s k be the elementary symmetric functions of the complex variables x 1 ,. .. , x k. We say that F $in$ C[s 1 ,. .. , s k ] is a trace function if their exists f $in$ C[z] such that F (s 1 ,. .. , s k ] = k j=1 f (x j) for all s $in$ C k. We give an explicit finite family of second order differential operators in the Weyl algebra W 2 := C[s 1 ,. .. , s k ] $partial$ $partial$s 1 ,. .. , $partial$ $partial$s k which generates the left ideal in W 2 of partial differential operators killing all trace functions. The proof uses a theorem for symmetric differential operators analogous to the usual symmetric functions theorem and the corresponding map for symbols. As a corollary, we obtain for each integer k a holonomic system which is a quotient of W 2 by an explicit left ideal whose local solutions are linear combinations of the branches of the multivalued root of the universal equation of degree k: z k + k h=1 (--1) h .s h .z k--h = 0.
166 - Eugen Hellmann 2012
We investigate the relation between p-adic Galois representations and overconvergent (phi,Gamma)-modules in families. Especially we construct a natural open subspace of a family of (phi,Gamma)-modules, over which it is induced by a family of Galois-representations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا