Do you want to publish a course? Click here

Irrationality and monodromy for cubic threefolds

58   0   0.0 ( 0 )
 Added by Ivan Smith
 Publication date 2019
  fields
and research's language is English
 Authors Ivan Smith




Ask ChatGPT about the research

We show the cohomological monodromy for the universal family of smooth cubic threefolds does not factor through the genus five mapping class group. This gives a geometric group theory perspective on the well-known irrationality of cubic threefolds.



rate research

Read More

We determine the Cox rings of the minimal resolutions of cubic surfaces with at most rational double points, of blow ups of the projective plane at non-general configurations of six points and of three dimensional smooth Fano varieties of Picard numbers one and two.
We present a number of examples to illustrate the use of small quotient dessins as substitutes for their often much larger and more complicated Galois (minimal regular) covers. In doing so we employ several useful group-theoretic techniques, such as the Frobenius character formula for counting triples in a finite group, pointing out some common traps and misconceptions associated with them. Although our examples are all chosen from Hurwitz curves and groups, they are relevant to dessins of any type.
Let M_0^R be the moduli space of smooth real cubic surfaces. We show that each of its components admits a real hyperbolic structure. More precisely, one can remove some lower-dimensional geodesic subspaces from a real hyperbolic space H^4 and form the quotient by an arithmetic group to obtain an orbifold isomorphic to a component of the moduli space. There are five components. For each we describe the corresponding lattices in PO(4,1). We also derive several new and several old results on the topology of M_0^R. Let M_s^R be the moduli space of real cubic surfaces that are stable in the sense of geometric invariant theory. We show that this space carries a hyperbolic structure whose restriction to M_0^R is that just mentioned. The corresponding lattice in PO(4,1), for which we find an explicit fundamental domain, is nonarithmetic.
We compute and compare the (intersection) cohomology of various natural geometric compactifications of the moduli space of cubic threefolds: the GIT compactification and its Kirwan blowup, as well as the Baily-Borel and toroidal compactifications of the ball quotient model, due to Allcock-Carlson-Toledo. Our starting point is Kirwans method. We then follow by investigating the behavior of the cohomology under the birational maps relating the various models, using the decomposition theorem in different ways, and via a detailed study of the boundary of the ball quotient model. As an easy illustration of our methods, the simpler case of the moduli of cubic surfaces is discussed in an appendix.
Let $k$ be an uncountable algebraically closed field of characteristic $0$, and let $X$ be a smooth projective connected variety of dimension $2p$, appropriately embedded into $mathbb P^m$ over $k$. Let $Y$ be a hyperplane section of $X$, and let $A^p(Y)$ and $A^{p+1}(X)$ be the groups of algebraically trivial algebraic cycles of codimension $p$ and $p+1$ modulo rational equivalence on $Y$ and $X$ respectively. Assume that, whenever $Y$ is smooth, the group $A^p(Y)$ is regularly parametrized by an abelian variety $A$ and coincides with the subgroup of degree $0$ classes in the Chow group $CH^p(Y)$. In the paper we prove that the kernel of the push-forward homomorphism from $A^p(Y)$ to $A^{p+1}(X)$ is the union of a countable collection of shifts of a certain abelian subvariety $A_0$ inside $A$. For a very general section $Y$ either $A_0=0$ or $A_0$ coincides with an abelian subvariety $A_1$ in $A$ whose tangent space is the group of vanishing cycles $H^{2p-1}(Y)_{rm van}$. Then we apply these general results to sections of a smooth cubic fourfold in $mathbb P^5$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا