No Arabic abstract
Materials with high carrier mobility showing large magnetoresistance (MR) have recently received much attention because of potential applications in future high-performance magneto-electric devices. Here, we report on the discovery of an electron-hole-compensated half-Heusler semimetal LuPtBi that exhibits an extremely high electron mobility of up to 79000 cm2/Vs with a non-saturating positive MR as large as 3200% at 2 K. Remarkably, the mobility at 300 K is found to exceed 10500 cm2/Vs, which is among the highest values reported in three-dimensional bulk materials thus far. The clean Shubnikov-de Haas quantum oscillation observed at low temperatures and the first-principles calculations together indicate that the high electron mobility is due to a rather small effective carrier mass caused by the distinctive band structure of the crystal. Our finding provide a new approach for finding large, high-mobility MR materials by designing an appropriate Fermi surface topology starting from simple electron-hole-compensated semimetals.
We report the observation of colossal positive magnetoresistance (MR) in single crystalline, high mobility TaAs2 semimetal. The excellent fit of MR by a single quadratic function of the magnetic field B over a wide temperature range (T = 2-300 K) suggests the semiclassical nature of the MR. The measurements of Hall effect and Shubnikov-de Haas oscillations, as well as band structure calculations suggest that the giant MR originates from the nearly perfectly compensated electrons and holes in TaAs2. The quadratic MR can even exceed 1,200,000% at B = 9 T and T = 2 K, which is one of the largest values among those of all known semi-metallic compounds including the very recently discovered WTe2 and NbSb2. The giant positive magnetoresistance in TaAs2, which not only has a fundamentally different origin from the negative colossal MR observed in magnetic systems, but also provides a nice complemental system that will be beneficial for applications in magnetoelectronic devices
Topological materials often exhibit remarkably linear, non-saturating magnetoresistance (LMR), which is both of scientific and technological importance. However, the role of topologically non-trivial states in the emergence of such a behaviour has been difficult to establish in experiments. Here, we show how strong interaction between the topological surface states (TSS) with a positive g-factor and the bulk carriers can lead to a smearing of the Landau levels giving rise to an LMR behavior in a semi-metallic Heusler compound. The role of TSS is established by controllably reducing the surface-bulk coupling by a combination of substitution alloying and the application of high magnetic field, when the LMR behavior transmutes into a quantum Hall phase arising from the TSS. Our work establishes that small changes in the coupling strength between the surface and the bulk carriers can have a profound impact on the magnetotransport behavior in topological materials. In the process, we lay out a strategy to both reveal and manipulate the exotic properties of TSS in compounds with a semi-metallic bulk band structure, as is the case in multi-functional Heusler compounds.
We report superconductivity in the ternary half-Heusler compound LuPtBi, with Tc = 1.0 K and Hc2 = 1.6 T. The crystal structure of LuPtBi lacks inversion symmetry, hence the material is a noncentrosymmetric superconductor. Magnetotransport data show semimetallic behavior in the normal state, which is evidence for the importance of spin-orbit interaction. Theoretical calculations indicate that the strong spin-orbit interaction in LuPtBi should cause strong band inversion, making this material a promising candidate for 3D topological superconductivity.
In this paper, we investigate the half-metallicity of Heusler alloys Fe2Co1-xCrxSi by first principles calculations and anisotropy magnetoresistance measurements. It is found that, with the increase of Cr content x, the Fermi level of Fe2Co1-xCrxSi moves from the top of valence band to the bottom of conduction band, and a large half-metallic band gap of 0.75 eV is obtained for x=0.75. We then successfully synthesized a series Heusler Fe2Co1-xCrxSi polycrystalline ribbon samples. The results of X-ray diffraction indicate that the Fe2Co1-xCrxSi series of samples are pure phase with a high degree of order and the saturation magnetic moment follows half-metallic Slater-Pauling rule. Except for the two end members, Fe2CoSi and Fe2CrSi, the anisotropic magnetoresistance of Fe2Co1-xCrxSi (x=0.25, 0.5, 0.75) show a negative value suggesting they are stable half-metallic ferromagnets.
Several early transition metal dipnictides have been found to host topological semimetal states and exhibit large magnetoresistance. In this study, we use angle-resolved photoemission spectroscopy (ARPES) and magneto-transport to study the electronic properties of a new transition metal dipnictide ZrP$_2$. We find that ZrP$_2$ exhibits an extremely large and unsaturated magnetoresistance of up to 40,000 % at 2 K, which originates from an almost perfect electron-hole compensation. Our band structure calculations further show that ZrP$_2$ hosts a topological nodal loop in proximity to the Fermi level. Based on the ARPES measurements, we confirm the results of our calculations and determine the surface band structure. Our study establishes ZrP$_2$ as a new platform to investigate near-perfect electron-hole compensation and its interplay with topological band structures.