Do you want to publish a course? Click here

Quantum Hall states emerging from linear magnetoresistance in a topological half-Heusler semimetal

68   0   0.0 ( 0 )
 Added by Shouvik Chatterjee
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Topological materials often exhibit remarkably linear, non-saturating magnetoresistance (LMR), which is both of scientific and technological importance. However, the role of topologically non-trivial states in the emergence of such a behaviour has been difficult to establish in experiments. Here, we show how strong interaction between the topological surface states (TSS) with a positive g-factor and the bulk carriers can lead to a smearing of the Landau levels giving rise to an LMR behavior in a semi-metallic Heusler compound. The role of TSS is established by controllably reducing the surface-bulk coupling by a combination of substitution alloying and the application of high magnetic field, when the LMR behavior transmutes into a quantum Hall phase arising from the TSS. Our work establishes that small changes in the coupling strength between the surface and the bulk carriers can have a profound impact on the magnetotransport behavior in topological materials. In the process, we lay out a strategy to both reveal and manipulate the exotic properties of TSS in compounds with a semi-metallic bulk band structure, as is the case in multi-functional Heusler compounds.



rate research

Read More

Materials with high carrier mobility showing large magnetoresistance (MR) have recently received much attention because of potential applications in future high-performance magneto-electric devices. Here, we report on the discovery of an electron-hole-compensated half-Heusler semimetal LuPtBi that exhibits an extremely high electron mobility of up to 79000 cm2/Vs with a non-saturating positive MR as large as 3200% at 2 K. Remarkably, the mobility at 300 K is found to exceed 10500 cm2/Vs, which is among the highest values reported in three-dimensional bulk materials thus far. The clean Shubnikov-de Haas quantum oscillation observed at low temperatures and the first-principles calculations together indicate that the high electron mobility is due to a rather small effective carrier mass caused by the distinctive band structure of the crystal. Our finding provide a new approach for finding large, high-mobility MR materials by designing an appropriate Fermi surface topology starting from simple electron-hole-compensated semimetals.
We propose a new topological quantum state of matter---the two-dimensional (2D) Weyl half semimetal (WHS), which features 2D Weyl points at Fermi level belonging to a single spin channel, such that the low-energy electrons are described by fully spin-polarized 2D Weyl fermions. We predict its realization in the ground state of monolayer PtCl$_3$. We show that the material is a half metal with an in-plane magnetization, and its Fermi surface consists of a pair of fully spin-polarized Weyl points protected by a mirror symmetry, which are robust against spin-orbit coupling. Remarkably, we show that the WHS state is a critical state at the topological phase transition between two quantum anomalous Hall insulator phases with opposite Chern numbers, such that a switching between quantum anomalous Hall states can be readily achieved by rotating the magnetization direction. Our findings demonstrate that WHS offers new opportunity to control the chiral edge channels, which will be useful for designing new topological electronic devices.
Based on first-principles study, we report the finding of a new topological semimetal LiBaBi in half-Heusler phase. The remarkable feature of this nonmagnetic, inversion-symmetry-breaking material is that it consists of only simple $s$- and $p$-block elements. Interestingly, the material is ordinary insulator in the absence of spin-orbit coupling (SOC) and becomes nodal-surface topological semimetal showing drumhead states when SOC is included. This is in stark contrast to other nodal-line and nodal-surface semimetals, where the extended nodal structure is destroyed once SOC is included. Importantly, the linear band crossings host three-, four-, five- and six-fold degeneracies near the Fermi level, making this compound very attractive for the study of `unconventional fermions. The band crossing points form a three-dimensional nodal structure around the zone center at the Fermi level. We identify the surface states responsible for the appearance of the drumhead states. The alloy also shows a phase transition from topological semimetal to a trivial insulator on application of pressure. In addition to revealing an intriguing effect of SOC on the nodal structure, our findings introduce a new half-Heusler alloy in the family of topological semimetals, thus creating more avenues for experimental exploration.
Recent experiments in the topological Weyl semimetal TaAs have observed record-breaking second-harmonic generation, a non-linear optical response at $2omega$ generated by an incoming light source at $omega$. However, whether second-harmonic generation is enhanced in topological semimetals in general is a challenging open question because their band structure entangles the contributions arising from trivial bands and topological band crossings. In this work, we circumvent this problem by studying RhSi, a chiral topological semimetal with a simple band structure with topological multifold fermions close to the Fermi energy. We measure second-harmonic generation (SHG) in a wide frequency window, $omegain [0.27,1.5]$eV and, using first principle calculations, we establish that, due to their linear dispersion, the contribution of multifold fermions to SHG is subdominant as compared with other regions in the Brillouin zone. Our calculations suggest that parts of the bands where the dispersion is relatively flat contribute significantly to SHG. As a whole, our results suggest avenues to enhance SHG responses.
110 - Jiabin Yu , Binghai Yan , 2017
In this work, we construct a generalized Kane model with a new coupling term between itinerant electron spins and local magnetic moments of anti-ferromagnetic ordering in order to describe the low energy effective physics in a large family of anti-ferromagnetic half-Heusler materials. Topological properties of this generalized Kane model is studied and a large variety of topological phases, including Dirac semimetal phase, Weyl semimetal phase, nodal line semimetal phase, type-B triple point semimetal phase, topological mirror (or glide) insulating phase and anti-ferromagnetic topological insulating phase, are identified in different parameter regions of our effective models. In particular, we find that the system is always driven into the anti-ferromagnetic topological insulator phase once a bulk band gap is open, irrespective of the magnetic moment direction, thus providing a robust realization of anti-ferromagentic topological insulators. Furthermore, we discuss the possible realization of these topological phases in realistic anti-ferromagnetic half-Heusler materials. Our effective model provides a basis for the future study of physical phenomena in this class of materials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا