A Schur ring (S-ring) over a group $G$ is called separable if every of its similaritities is induced by isomorphism. We establish a criterion for an S-ring to be separable in the case when the group $G$ is cyclic. Using this criterion, we prove that any S-ring over a cyclic $p$-group is separable and that the class of separable circulant S-rings is closed with respect to duality.
Let $G$ be a finite group. There is a natural Galois correspondence between the permutation groups containing $G$ as a regular subgroup, and the Schur rings (S-rings) over~$G$. The problem we deal with in the paper, is to characterize those S-rings that are closed under this correspondence, when the group $G$ is cyclic (the schurity problem for circulant S-rings). It is proved that up to a natural reduction, the characteristic property of such an S-ring is to be a certain algebraic fusion of its coset closure introduced and studied in the paper. Basing on this characterization we show that the schurity problem is equivalent to the consistency of a modular linear system associated with a circulant S-ring under consideration. As a byproduct we show that a circulant S-ring is Galois closed if and only if so is its dual.
The commuting graph of a group G, denoted by Gamma(G), is the simple undirected graph whose vertices are the non-central elements of G and two distinct vertices are adjacent if and only if they commute. Let Z_m be the commutative ring of equivalence classes of integers modulo m. In this paper we investigate the connectivity and diameters of the commuting graphs of GL(n,Z_m) to contribute to the conjecture that there is a universal upper bound on diam(Gamma(G)) for any finite group G when Gamma(G) is connected. For any composite m, it is shown that Gamma(GL(n,Z_m)) and Gamma(M(n,Z_m)) are connected and diam(Gamma(GL(n,Z_m))) = diam(Gamma(M(n,Z_m))) = 3. For m a prime, the instances of connectedness and absolute bounds on the diameters of Gamma(GL(n,Z_m)) and Gamma(M(n,Z_m)) when they are connected are concluded from previous results.
We prove that the finitely presentable subgroups of residually free groups are separable and that the subgroups of type $mathrm{FP}_infty$ are virtual retracts. We describe a uniform solution to the membership problem for finitely presentable subgroups of residually free groups.
We use wreath products to provide criteria for a group to be conjugacy separable or omnipotent. These criteria are in terms of virtual retractions onto cyclic subgroups. We give two applications: a straightforward topological proof of the theorem of Stebe that infinite-order elements of Fuchsian groups (of the first type) are conjugacy distinguished, and a proof that surface groups are omnipotent.
We present a review of the problem of finding out whether a quantum state of two or more parties is entangled or separable. After a formal definition of entangled states, we present a few criteria for identifying entangled states and introduce some entanglement measures. We also provide a classification of entangled states with respect to their usefulness in quantum dense coding, and present some aspects of multipartite entanglement.