Do you want to publish a course? Click here

The diameters of commuting graphs of linear groups and matrix rings over the integers modulo m

244   0   0.0 ( 0 )
 Added by Aedan Pope
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

The commuting graph of a group G, denoted by Gamma(G), is the simple undirected graph whose vertices are the non-central elements of G and two distinct vertices are adjacent if and only if they commute. Let Z_m be the commutative ring of equivalence classes of integers modulo m. In this paper we investigate the connectivity and diameters of the commuting graphs of GL(n,Z_m) to contribute to the conjecture that there is a universal upper bound on diam(Gamma(G)) for any finite group G when Gamma(G) is connected. For any composite m, it is shown that Gamma(GL(n,Z_m)) and Gamma(M(n,Z_m)) are connected and diam(Gamma(GL(n,Z_m))) = diam(Gamma(M(n,Z_m))) = 3. For m a prime, the instances of connectedness and absolute bounds on the diameters of Gamma(GL(n,Z_m)) and Gamma(M(n,Z_m)) when they are connected are concluded from previous results.



rate research

Read More

143 - Manik Dhar , Zeev Dvir 2020
A Kakeya set $S subset (mathbb{Z}/Nmathbb{Z})^n$ is a set containing a line in each direction. We show that, when $N$ is any square-free integer, the size of the smallest Kakeya set in $(mathbb{Z}/Nmathbb{Z})^n$ is at least $C_{n,epsilon} N^{n - epsilon}$ for any $epsilon$ -- resolving a special case of a conjecture of Hickman and Wright. Previously, such bounds were only known for the case of prime $N$. We also show that the case of general $N$ can be reduced to lower bounding the $mathbb{F}_p$ rank of the incidence matrix of points and hyperplanes over $(mathbb{Z}/p^kmathbb{Z})^n$.
In this paper, we study expanding phenomena in the setting of matrix rings. More precisely, we will prove that If $A$ is a set of $M_2(mathbb{F}_q)$ and $|A|gg q^{7/2}$, then we have [|A(A+A)|, ~|A+AA|gg q^4.] If $A$ is a set of $SL_2(mathbb{F}_q)$ and $|A|gg q^{5/2}$, then we have [|A(A+A)|, ~|A+AA|gg q^4.] We also obtain similar results for the cases of $A(B+C)$ and $A+BC$, where $A, B, C$ are sets in $M_2(mathbb{F}_q)$.
We prove that a random group in the triangular density model has, for density larger than 1/3, fixed point properties for actions on $L^p$-spaces (affine isometric, and more generally $(2-2epsilon)^{1/2p}$-uniformly Lipschitz) with $p$ varying in an interval increasing with the set of generators. In the same model, we establish a double inequality between the maximal $p$ for which $L^p$-fixed point properties hold and the conformal dimension of the boundary. In the Gromov density model, we prove that for every $p_0 in [2, infty)$ for a sufficiently large number of generators and for any density larger than 1/3, a random group satisfies the fixed point property for affine actions on $L^p$-spaces that are $(2-2epsilon)^{1/2p}$-uniformly Lipschitz, and this for every $pin [2,p_0]$. To accomplish these goals we find new bounds on the first eigenvalue of the p-Laplacian on random graphs, using methods adapted from Kahn and Szemeredis approach to the 2-Laplacian. These in turn lead to fixed point properties using arguments of Bourdon and Gromov, which extend to $L^p$-spaces previous results for Kazhdans Property (T) established by Zuk and Ballmann-Swiatkowski.
The commuting graph of a group $G$ is the simple undirected graph whose vertices are the non-central elements of $G$ and two distinct vertices are adjacent if and only if they commute. It is conjectured by Jafarzadeh and Iranmanesh that there is a universal upper bound on the diameter of the commuting graphs of finite groups when the commuting graph is connected. In this paper we determine upper bounds on the diameter of the commuting graph for some classes of groups to rule them out as possible counterexamples to this conjecture. We also give an example of an infinite family of groups with trivial centre and diameter 6, the previously largest known diameter for an infinite family was 5 for $S_n$.
212 - Anuj Dawar 2012
Motivated by the quest for a logic for PTIME and recent insights that the descriptive complexity of problems from linear algebra is a crucial aspect of this problem, we study the solvability of linear equation systems over finite groups and rings from the viewpoint of logical (inter-)definability. All problems that we consider are decidable in polynomial time, but not expressible in fixed-point logic with counting. They also provide natural candidates for a separation of polynomial time from rank logics, which extend fixed-point logics by operators for determining the rank of definable matrices and which are sufficient for solvability problems over fields. Based on the structure theory of finite rings, we establish logical reductions among various solvability problems. Our results indicate that all solvability problems for linear equation systems that separate fixed-point logic with counting from PTIME can be reduced to solvability over commutative rings. Moreover, we prove closure properties for classes of queries that reduce to solvability over rings, which provides normal forms for logics extended with solvability operators. We conclude by studying the extent to which fixed-point logic with counting can express problems in linear algebra over finite commutative rings, generalising known results on the logical definability of linear-algebraic problems over finite fields.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا