Do you want to publish a course? Click here

Virtual retractions, conjugacy separability and omnipotence

151   0   0.0 ( 0 )
 Added by Henry Wilton
 Publication date 2008
  fields
and research's language is English
 Authors Henry Wilton




Ask ChatGPT about the research

We use wreath products to provide criteria for a group to be conjugacy separable or omnipotent. These criteria are in terms of virtual retractions onto cyclic subgroups. We give two applications: a straightforward topological proof of the theorem of Stebe that infinite-order elements of Fuchsian groups (of the first type) are conjugacy distinguished, and a proof that surface groups are omnipotent.



rate research

Read More

There are limit groups having non-conjugate elements whose images are conjugate in every free quotient. Towers over free groups are freely conjugacy separable.
191 - Tushar Kanta Naik , Neha Nanda , 2019
The twin group $T_n$ is a right angled Coxeter group generated by $n-1$ involutions and the pure twin group $PT_n$ is the kernel of the natural surjection from $T_n$ onto the symmetric group on $n$ symbols. In this paper, we investigate some structural aspects of these groups. We derive a formula for the number of conjugacy classes of involutions in $T_n$, which quite interestingly, is related to the well-known Fibonacci sequence. We also derive a recursive formula for the number of $z$-classes of involutions in $T_n$. We give a new proof of the structure of $Aut(T_n)$ for $n ge 3$, and show that $T_n$ is isomorphic to a subgroup of $Aut(PT_n)$ for $n geq 4$. Finally, we construct a representation of $T_n$ to $Aut(F_n)$ for $n ge 2$.
A generalized Baumslag-Solitar group is the fundamental group of a graph of groups all of whose vertex and edge groups are infinite cyclic. Levitt proves that any generalized Baumslag-Solitar group has property R-infinity, that is, any automorphism has an infinite number of twisted conjugacy classes. We show that any group quasi-isometric to a generalized Baumslag-Solitar group also has property R-infinity. This extends work of the authors proving that any group quasi-isometric to a solvable Baumslag-Solitar BS(1,n) group has property R-infinity, and relies on the classification of generalized Baumslag-Solitar groups given by Whyte.
153 - John Crisp 2008
We prove that the conjugacy problem in right-angled Artin groups (RAAGs), as well as in a large and natural class of subgroups of RAAGs, can be solved in linear-time. This class of subgroups contains, for instance, all graph braid groups (i.e. fundamental groups of configuration spaces of points in graphs), many hyperbolic groups, and it coincides with the class of fundamental groups of ``special cube complexes studied independently by Haglund and Wise.
Given a group $G$ and a subset $X subset G$, an element $g in G$ is called quasi-positive if it is equal to a product of conjugates of elements in the semigroup generated by $X$. This notion is important in the context of braid groups, where it has been shown that the closure of quasi-positive braids coincides with the geometrically defined class of $mathbb{C}$-transverse links. We describe an algorithm that recognizes whether or not an element of a free group is quasi-positive with respect to a basis. Spherical cancellation diagrams over free groups are used to establish the validity of the algorithm and to determine the worst-case runtime.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا