We prove that the finitely presentable subgroups of residually free groups are separable and that the subgroups of type $mathrm{FP}_infty$ are virtual retracts. We describe a uniform solution to the membership problem for finitely presentable subgroups of residually free groups.
There are limit groups having non-conjugate elements whose images are conjugate in every free quotient. Towers over free groups are freely conjugacy separable.
The congruence subgroup problem for a finitely generated group $Gamma$ asks whether $widehat{Autleft(Gammaright)}to Aut(hat{Gamma})$ is injective, or more generally, what is its kernel $Cleft(Gammaright)$? Here $hat{X}$ denotes the profinite completion of $X$. In this paper we first give two new short proofs of two known results (for $Gamma=F_{2}$ and $Phi_{2}$) and a new result for $Gamma=Phi_{3}$: 1. $Cleft(F_{2}right)=left{ eright}$ when $F_{2}$ is the free group on two generators. 2. $Cleft(Phi_{2}right)=hat{F}_{omega}$ when $Phi_{n}$ is the free metabelian group on $n$ generators, and $hat{F}_{omega}$ is the free profinite group on $aleph_{0}$ generators. 3. $Cleft(Phi_{3}right)$ contains $hat{F}_{omega}$. Results 2. and 3. should be contrasted with an upcoming result of the first author showing that $Cleft(Phi_{n}right)$ is abelian for $ngeq4$.
Answering a question of Dan Haran and generalizing some results of Aschbacher-Guralnick and Suzuki, we prove that given a set of primes pi, any finite group can be generated by a pi-subgroup and a pi-subgroup. This gives a free product description of a countably generated free profinite group.
A group $G$ is called subgroup conjugacy separable if for every pair of non-conjugate finitely generated subgroups of $G$, there exists a finite quotient of $G$ where the images of these subgroups are not conjugate. It is proved that the fundamental group of a hyperbolic 3-manifold (closed or with cusps) is subgroup conjugacy separable.
We prove that with probability tending to 1, a 1-relator group with at least 3 generators and relator of length n is residually finite, virtually residually (finite p)-group for all sufficiently large p, and coherent. The proof uses both combinatorial group theory and non-trivial results about Brownian motions, bridges and excursions in R^k.