Do you want to publish a course? Click here

Millimeter Wave MIMO Channel Tracking Systems

147   0   0.0 ( 0 )
 Added by Jiguang He
 Publication date 2014
and research's language is English




Ask ChatGPT about the research

We consider channel/subspace tracking systems for temporally correlated millimeter wave (e.g., E-band) multiple-input multiple-output (MIMO) channels. Our focus is given to the tracking algorithm in the non-line-of-sight (NLoS) environment, where the transmitter and the receiver are equipped with hybrid analog/digital precoder and combiner, respectively. In the absence of straightforward time-correlated channel model in the millimeter wave MIMO literature, we present a temporal MIMO channel evolution model for NLoS millimeter wave scenarios. Considering that conventional MIMO channel tracking algorithms in microwave bands are not directly applicable, we propose a new channel tracking technique based on sequentially updating the precoder and combiner. Numerical results demonstrate the superior channel tracking ability of the proposed technique over independent sounding approach in the presented channel model and the spatial channel model (SCM) adopted in 3GPP specification.



rate research

Read More

This paper investigates the hybrid precoding design for millimeter wave (mmWave) multiple-input multiple-output (MIMO) systems with finite-alphabet inputs. The mmWave MIMO system employs partially-connected hybrid precoding architecture with dynamic subarrays, where each radio frequency (RF) chain is connected to a dynamic subset of antennas. We consider the design of analog and digital precoders utilizing statistical and/or mixed channel state information (CSI), which involve solving an extremely difficult problem in theory: First, designing the optimal partition of antennas over RF chains is a combinatorial optimization problem, whose optimal solution requires an exhaustive search over all antenna partitioning solutions; Second, the average mutual information under mmWave MIMO channels lacks closed-form expression and involves prohibitive computational burden; Third, the hybrid precoding problem with given partition of antennas is nonconvex with respect to the analog and digital precoders. To address these issues, this study first presents a simple criterion and the corresponding low complexity algorithm to design the optimal partition of antennas using statistical CSI. Then it derives the lower bound and its approximation for the average mutual information, in which the computational complexity is greatly reduced compared to calculating the average mutual information directly. In addition, it also shows that the lower bound with a constant shift offers a very accurate approximation to the average mutual information. This paper further proposes utilizing the lower bound approximation as a low-complexity and accurate alternative for developing a manifold-based gradient ascent algorithm to find near optimal analog and digital precoders. Several numerical results are provided to show that our proposed algorithm outperforms existing hybrid precoding algorithms.
Millimeter-wave massive MIMO with lens antenna array can considerably reduce the number of required radio-frequency (RF) chains by beam selection. However, beam selection requires the base station to acquire the accurate information of beamspace channel. This is a challenging task, as the size of beamspace channel is large while the number of RF chains is limited. In this paper, we investigate the beamspace channel estimation problem in mmWave massive MIMO systems with lens antenna array. Specifically, we first design an adaptive selecting network for mmWave massive MIMO systems with lens antenna array, and based on this network, we further formulate the beamspace channel estimation problem as a sparse signal recovery problem. Then, by fully utilizing the structural characteristics of mmWave beamspace channel, we propose a support detection (SD)-based channel estimation scheme with reliable performance and low pilot overhead. Finally, the performance and complexity analyses are provided to prove that the proposed SD-based channel estimation scheme can estimate the support of sparse beamspace channel with comparable or higher accuracy than conventional schemes. Simulation results verify that the proposed SD-based channel estimation scheme outperforms conventional schemes and enjoys satisfying accuracy, even in the low SNR region as the structural characteristics of beamspace channel can be exploited.
The tremendous bandwidth available in the millimeter wave (mmW) frequencies between 30 and 300 GHz have made these bands an attractive candidate for next-generation cellular systems. However, reliable communication at these frequencies depends extensively on beamforming with very high-dimensional antenna arrays. Estimating the channel sufficiently accurately to perform beamforming can thus be challenging both due to low coherence time and large number of antennas. Also, the measurements used for channel estimation may need to be made with analog beamforming where the receiver can look in only direction at a time. This work presents a novel method for estimation of the receive-side spatial covariance matrix of a channel from a sequence of power measurements made at different angular directions. The method reduces the spatial covariance estimation to a matrix completion optimization problem. To reduce the number of measurements, the optimization can incorporate the low-rank constraints in the channels that are typical in the mmW setting. The optimization is convex and fast, iterative methods are presented to solving the problem. Simulations are presented for both single and multi-path channels using channel models derived from real measurements in New York City at 28 GHz.
Hybrid analog and digital BeamForming (HBF) is one of the enabling transceiver technologies for millimeter Wave (mmWave) Multiple Input Multiple Output (MIMO) systems. This technology offers highly directional communication, which is able to confront the intrinsic characteristics of mmWave signal propagation. However, the small coherence time in mmWave systems, especially under mobility conditions, renders efficient Beam Management (BM) in standalone mmWave communication a very difficult task. In this paper, we consider HBF transceivers with planar antenna panels and design a multi-level beam codebook for the analog beamformer comprising flat top beams with variable widths. These beams exhibit an almost constant array gain for the whole desired angle width, thereby facilitating efficient hierarchical BM. Focusing on the uplink communication, we present a novel beam training algorithm with dynamic beam ordering, which is suitable for the stringent latency requirements of the latest mmWave standard discussions. Our simulation results showcase the latency performance improvement and received signal-to-noise ratio with different variations of the proposed scheme over the optimum beam training scheme based on exhaustive narrow beam search.
The performance of millimeter wave (mmWave) multiple-input multiple-output (MIMO) systems is limited by the sparse nature of propagation channels and the restricted number of radio frequency (RF) chains at transceivers. The introduction of reconfigurable antennas offers an additional degree of freedom on designing mmWave MIMO systems. This paper provides a theoretical framework for studying the mmWave MIMO with reconfigurable antennas. Based on the virtual channel model, we present an architecture of reconfigurable mmWave MIMO with beamspace hybrid analog-digital beamformers and reconfigurable antennas at both the transmitter and the receiver. We show that employing reconfigurable antennas can provide throughput gain for the mmWave MIMO. We derive the expression for the average throughput gain of using reconfigurable antennas in the system, and further derive the expression for the outage throughput gain for the scenarios where the channels are (quasi) static. Moreover, we propose a low-complexity algorithm for reconfiguration state selection and beam selection. Our numerical results verify the derived expressions for the throughput gains and demonstrate the near-optimal throughput performance of the proposed low-complexity algorithm.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا