No Arabic abstract
This paper investigates the hybrid precoding design for millimeter wave (mmWave) multiple-input multiple-output (MIMO) systems with finite-alphabet inputs. The mmWave MIMO system employs partially-connected hybrid precoding architecture with dynamic subarrays, where each radio frequency (RF) chain is connected to a dynamic subset of antennas. We consider the design of analog and digital precoders utilizing statistical and/or mixed channel state information (CSI), which involve solving an extremely difficult problem in theory: First, designing the optimal partition of antennas over RF chains is a combinatorial optimization problem, whose optimal solution requires an exhaustive search over all antenna partitioning solutions; Second, the average mutual information under mmWave MIMO channels lacks closed-form expression and involves prohibitive computational burden; Third, the hybrid precoding problem with given partition of antennas is nonconvex with respect to the analog and digital precoders. To address these issues, this study first presents a simple criterion and the corresponding low complexity algorithm to design the optimal partition of antennas using statistical CSI. Then it derives the lower bound and its approximation for the average mutual information, in which the computational complexity is greatly reduced compared to calculating the average mutual information directly. In addition, it also shows that the lower bound with a constant shift offers a very accurate approximation to the average mutual information. This paper further proposes utilizing the lower bound approximation as a low-complexity and accurate alternative for developing a manifold-based gradient ascent algorithm to find near optimal analog and digital precoders. Several numerical results are provided to show that our proposed algorithm outperforms existing hybrid precoding algorithms.
We consider channel/subspace tracking systems for temporally correlated millimeter wave (e.g., E-band) multiple-input multiple-output (MIMO) channels. Our focus is given to the tracking algorithm in the non-line-of-sight (NLoS) environment, where the transmitter and the receiver are equipped with hybrid analog/digital precoder and combiner, respectively. In the absence of straightforward time-correlated channel model in the millimeter wave MIMO literature, we present a temporal MIMO channel evolution model for NLoS millimeter wave scenarios. Considering that conventional MIMO channel tracking algorithms in microwave bands are not directly applicable, we propose a new channel tracking technique based on sequentially updating the precoder and combiner. Numerical results demonstrate the superior channel tracking ability of the proposed technique over independent sounding approach in the presented channel model and the spatial channel model (SCM) adopted in 3GPP specification.
Hybrid analog/digital precoding offers a compromise between hardware complexity and system performance in millimeter wave (mmWave) systems. This type of precoding allows mmWave systems to leverage large antenna array gains that are necessary for sufficient link margin, while permitting low cost and power consumption hardware. Most prior work has focused on hybrid precoding for narrowband mmWave systems, with perfect or estimated channel knowledge at the transmitter. MmWave systems, however, will likely operate on wideband channels with frequency selectivity. Therefore, this paper considers wideband mmWave systems with a limited feedback channel between the transmitter and receiver. First, the optimal hybrid precoding design for a given RF codebook is derived. This provides a benchmark for any other heuristic algorithm and gives useful insights into codebook designs. Second, efficient hybrid analog/digital codebooks are developed for spatial multiplexing in wideband mmWave systems. Finally, a low-complexity yet near-optimal greedy frequency selective hybrid precoding algorithm is proposed based on Gram-Schmidt orthogonalization. Simulation results show that the developed hybrid codebooks and precoder designs achieve very good performance compared with the unconstrained solutions while requiring much less complexity.
Millimeter wave (mmWave) systems will likely employ large antenna arrays at both the transmitters and receivers. A natural application of antenna arrays is simultaneous transmission to multiple users, which requires multi-user precoding at the transmitter. Hardware constraints, however, make it difficult to apply conventional lower frequency MIMO precoding techniques at mmWave. This paper proposes and analyzes a low complexity hybrid analog/digital beamforming algorithm for downlink multi-user mmWave systems. Hybrid precoding involves a combination of analog and digital processing that is motivated by the requirement to reduce the power consumption of the complete radio frequency and mixed signal hardware. The proposed algorithm configures hybrid precoders at the transmitter and analog combiners at multiple receivers with a small training and feedback overhead. For this algorithm, we derive a lower bound on the achievable rate for the case of single-path channels, show its asymptotic optimality at large numbers of antennas, and make useful insights for more general cases. Simulation results show that the proposed algorithm offers higher sum rates compared with analog-only beamforming, and approaches the performance of the unconstrained digital precoding solutions.
Hybrid analog and digital BeamForming (HBF) is one of the enabling transceiver technologies for millimeter Wave (mmWave) Multiple Input Multiple Output (MIMO) systems. This technology offers highly directional communication, which is able to confront the intrinsic characteristics of mmWave signal propagation. However, the small coherence time in mmWave systems, especially under mobility conditions, renders efficient Beam Management (BM) in standalone mmWave communication a very difficult task. In this paper, we consider HBF transceivers with planar antenna panels and design a multi-level beam codebook for the analog beamformer comprising flat top beams with variable widths. These beams exhibit an almost constant array gain for the whole desired angle width, thereby facilitating efficient hierarchical BM. Focusing on the uplink communication, we present a novel beam training algorithm with dynamic beam ordering, which is suitable for the stringent latency requirements of the latest mmWave standard discussions. Our simulation results showcase the latency performance improvement and received signal-to-noise ratio with different variations of the proposed scheme over the optimum beam training scheme based on exhaustive narrow beam search.
Millimeter-wave massive MIMO with lens antenna array can considerably reduce the number of required radio-frequency (RF) chains by beam selection. However, beam selection requires the base station to acquire the accurate information of beamspace channel. This is a challenging task, as the size of beamspace channel is large while the number of RF chains is limited. In this paper, we investigate the beamspace channel estimation problem in mmWave massive MIMO systems with lens antenna array. Specifically, we first design an adaptive selecting network for mmWave massive MIMO systems with lens antenna array, and based on this network, we further formulate the beamspace channel estimation problem as a sparse signal recovery problem. Then, by fully utilizing the structural characteristics of mmWave beamspace channel, we propose a support detection (SD)-based channel estimation scheme with reliable performance and low pilot overhead. Finally, the performance and complexity analyses are provided to prove that the proposed SD-based channel estimation scheme can estimate the support of sparse beamspace channel with comparable or higher accuracy than conventional schemes. Simulation results verify that the proposed SD-based channel estimation scheme outperforms conventional schemes and enjoys satisfying accuracy, even in the low SNR region as the structural characteristics of beamspace channel can be exploited.