No Arabic abstract
The energy band structure of a rotating BEC with a link in a quasi-one-dimensional torus and the role of dissipation is studied. Through this study we are able to give a microscopic interpretation of hysteresis recently observed in the experiment and we confirm that the hysteresis is the result of the presence of metastable state. We consider of both the adiabatic change and the instantaneous change of the rotation, and exhibit the differences between them. It is found that the sharp and size of the hysteresis loop change drastically with the strength of the link.
Atomtronics is an emerging interdisciplinary field that seeks new functionality by creating devices and circuits where ultra-cold atoms, often superfluids, play a role analogous to the electrons in electronics. Hysteresis is widely used in electronic circuits, e.g., it is routinely observed in superconducting circuits and is essential in rf-superconducting quantum interference devices [SQUIDs]. Furthermore, hysteresis is as fundamental to superfluidity (and superconductivity) as quantized persistent currents, critical velocity, and Josephson effects. Nevertheless, in spite of multiple theoretical predictions, hysteresis has not been previously observed in any superfluid, atomic-gas Bose-Einstein condensate (BEC). Here we demonstrate hysteresis in a quantized atomtronic circuit: a ring of superfluid BEC obstructed by a rotating weak link. We directly detect hysteresis between quantized circulation states, in contrast to superfluid liquid helium experiments that observed hysteresis directly in systems where the quantization of flow could not be observed and indirectly in systems that showed quantized flow. Our techniques allow us to tune the size of the hysteresis loop and to consider the fundamental excitations that accompany hysteresis. The results suggest that the relevant excitations involved in hysteresis are vortices and indicate that dissipation plays an important role in the dynamics. Controlled hysteresis in atomtronic circuits may prove to be a crucial feature for the development of practical devices, just as it has in electronic circuits like memory, digital noise filters (e.g., Schmitt triggers), and magnetometers (e.g., SQUIDs).
Superfluidity in its various forms has fascinated scientists since the observation of frictionless flow in liquid helium II. In three spatial dimensions (3D), it is conceptually associated with the emergence of long-range order (LRO) at a critical temperature $T_{text{c}}$. One of its hallmarks, predicted by the highly successful two-fluid model and observed in both liquid helium and ultracold atomic gases, is the existence of two kinds of sound excitations, the first and second sound. In 2D systems, thermal fluctuations preclude LRO, but superfluidity nevertheless emerges at a nonzero $T_{text{c}}$ via the infinite-order Berezinskii-Kosterlitz-Thouless (BKT) transition, which is associated with a universal jump in the superfluid density $n_{text{s}}$ without any discontinuities in the fluids thermodynamic properties. BKT superfluids are also predicted to support two sounds, but the observation of this has remained elusive. Here we observe first and second sound in a homogeneous 2D atomic Bose gas, and from the two temperature-dependent sound speeds extract its superfluid density. Our results agree with BKT theory, including the prediction for the universal superfluid-density jump.
Recent advances in cooling techniques make now possible the experimental study of quantum phase transitions, which are transitions near absolute zero temperature accessed by varying a control parameter. A paradigmatic example is the superfluid-Mott transition of interacting bosons on a periodic lattice. From the relativistic Ginzburg-Landau action of this superfluid-Mott transition we derive the elementary excitations of the bosonic system, which contain in the superfluid phase a gapped Higgs mode and a gappless Goldstone mode. We show that this energy spectrum is in good agreement with the available experimental data and we use it to extract, with the help of dimensional regularization, meaningful analytical formulas for the beyond-mean-field equation of state in two and three spatial dimensions. We find that, while the mean-field equation of state always gives a second-order quantum phase transition, the inclusion of Gaussian quantum fluctuations can induce a first-order quantum phase transition. This prediction is a strong benchmark for next future experiments on quantum phase transitions.
Rydberg atoms in optical tweezer arrays provide a playground for nonequilibrium quantum many-body physics. The PXP model describes the dynamics of such systems in the strongly interacting Rydberg blockade regime and notably exhibits weakly nonergodic dynamics due to quantum many-body scars. Here, we study the PXP model in a strong staggered external field, which has been proposed to manifest quasiparticle confinement in light of a mapping to a lattice gauge theory. We characterize this confining regime using both numerical exact diagonalization and perturbation theory around the strong-field limit. In addition to the expected emergent symmetry generated by the staggered field, we find a second emergent symmetry that is special to the PXP model. The interplay between these emergent symmetries and the Rydberg blockade constraint dramatically slows down the systems dynamics beyond naive expectations. We devise a nested Schrieffer-Wolff perturbation theory to properly account for the new emergent symmetry and show that this treatment is essential to understand the numerically observed relaxation time scales. We also discuss connections to Hilbert space fragmentation and trace the origin of the new emergent symmetry to a nearly-$SU(2)$ algebra discovered in the context of many-body scarring.
We propose a realization of mesonic and baryonic quasiparticle excitations in Rydberg atom arrays with programmable interactions. Recent experiments have shown that such systems possess a $mathbb{Z}_3$-ordered crystalline phase whose low-energy quasiparticles are defects in the crystalline order. By engineering a $mathbb{Z}_3$-translational-symmetry breaking field on top of the Rydberg-blockaded Hamiltonian, we show that different types of defects experience confinement, and as a consequence form mesonic or baryonic quasiparticle excitations. We illustrate the formation of these quasiparticles by studying a quantum chiral clock model related to the Rydberg Hamiltonian. We then propose an experimental protocol involving out-of-equilibrium dynamics to directly probe the spectrum of the confined excitations. We show that the confined quasiparticle spectrum can limit quantum information spreading in this system. This proposal is readily applicable to current Rydberg experiments, and the method can be easily generalized to more complex confined excitations (e.g. `tetraquarks, `pentaquarks) in phases with $mathbb{Z}_q$ order for $q>3$.