Do you want to publish a course? Click here

Hysteresis in a quantized, superfluid atomtronic circuit

148   0   0.0 ( 0 )
 Added by Stephen Eckel
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Atomtronics is an emerging interdisciplinary field that seeks new functionality by creating devices and circuits where ultra-cold atoms, often superfluids, play a role analogous to the electrons in electronics. Hysteresis is widely used in electronic circuits, e.g., it is routinely observed in superconducting circuits and is essential in rf-superconducting quantum interference devices [SQUIDs]. Furthermore, hysteresis is as fundamental to superfluidity (and superconductivity) as quantized persistent currents, critical velocity, and Josephson effects. Nevertheless, in spite of multiple theoretical predictions, hysteresis has not been previously observed in any superfluid, atomic-gas Bose-Einstein condensate (BEC). Here we demonstrate hysteresis in a quantized atomtronic circuit: a ring of superfluid BEC obstructed by a rotating weak link. We directly detect hysteresis between quantized circulation states, in contrast to superfluid liquid helium experiments that observed hysteresis directly in systems where the quantization of flow could not be observed and indirectly in systems that showed quantized flow. Our techniques allow us to tune the size of the hysteresis loop and to consider the fundamental excitations that accompany hysteresis. The results suggest that the relevant excitations involved in hysteresis are vortices and indicate that dissipation plays an important role in the dynamics. Controlled hysteresis in atomtronic circuits may prove to be a crucial feature for the development of practical devices, just as it has in electronic circuits like memory, digital noise filters (e.g., Schmitt triggers), and magnetometers (e.g., SQUIDs).



rate research

Read More

93 - Tieling Song , D.L. Zhou 2014
The energy band structure of a rotating BEC with a link in a quasi-one-dimensional torus and the role of dissipation is studied. Through this study we are able to give a microscopic interpretation of hysteresis recently observed in the experiment and we confirm that the hysteresis is the result of the presence of metastable state. We consider of both the adiabatic change and the instantaneous change of the rotation, and exhibit the differences between them. It is found that the sharp and size of the hysteresis loop change drastically with the strength of the link.
Measurement techniques based upon the Hall effect are invaluable tools in condensed matter physics. When an electric current flows perpendicular to a magnetic field, a Hall voltage develops in the direction transverse to both the current and the field. In semiconductors, this behaviour is routinely used to measure the density and charge of the current carriers (electrons in conduction bands or holes in valence bands) -- internal properties of the system that are not accessible from measurements of the conventional resistance. For strongly interacting electron systems, whose behaviour can be very different from the free electron gas, the Hall effects sensitivity to internal properties makes it a powerful tool; indeed, the quantum Hall effects are named after the tool by which they are most distinctly measured instead of the physics from which the phenomena originate. Here we report the first observation of a Hall effect in an ultracold gas of neutral atoms, revealed by measuring a Bose-Einstein condensates transport properties perpendicular to a synthetic magnetic field. Our observations in this vortex-free superfluid are in good agreement with hydrodynamic predictions, demonstrating that the systems global irrotationality influences this superfluid Hall signal.
The splitting instability of a doubly-quantized vortex in the BEC-BCS crossover of a superfluid Fermi gas is investigated by means of a low-energy effective field theory. Our linear stability analysis and non-equilibrium numerical simulations reveal that the character of the instability drastically changes across the crossover. In the BEC-limit, the splitting of the vortex into two singly-quantized vortices occurs through the emission of phonons, while such an emission is completely absent in the BCS-limit. In the crossover-regime, the instability and phonon emission are enhanced, and the lifetime of a doubly-quantized vortex becomes minimal. The emitted phonon is amplified due to the rotational superradiance and can be observed as a spiraling pattern in the superfluid. We also investigate the influence of temperature, population imbalance, and three-dimensional effects.
We consider the interaction of a ferromagnetic spinor Bose-Einstein condensate with a magnetic field gradient. The magnetic field gradient realizes a spin-position coupling that explicitly breaks time-reversal symmetry T and space parity P, but preserves the combined PT symmetry. We observe using numerical simulations, a first-order phase transition spontaneously breaking this re-maining symmetry. The transition to a low-gradient phase, in which gradient effects are frozen out by the ferromagnetic interaction, suggests the possibility of high-coherence magnetic sensors unaffected by gradient dephasing.
In a recent article, Yefsah et al. [Nature 499, 426 (2013)] report the observation of an unusual excitation in an elongated harmonically trapped unitary Fermi gas. After phase imprinting a domain wall, they observe oscillations almost an order of magnitude slower than predicted by any theory of domain walls which they interpret as a heavy soliton of inertial mass some 200 times larger than the free fermion mass or 50 times larger than expected for a domain wall. We present compelling evidence that this soliton is instead a quantized vortex ring by showing that the main aspects of the experiment can be naturally explained within the framework of time-dependent superfluid DFT.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا