Do you want to publish a course? Click here

Observation of first and second sound in a Berezinskii-Kosterlitz-Thouless superfluid

122   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Superfluidity in its various forms has fascinated scientists since the observation of frictionless flow in liquid helium II. In three spatial dimensions (3D), it is conceptually associated with the emergence of long-range order (LRO) at a critical temperature $T_{text{c}}$. One of its hallmarks, predicted by the highly successful two-fluid model and observed in both liquid helium and ultracold atomic gases, is the existence of two kinds of sound excitations, the first and second sound. In 2D systems, thermal fluctuations preclude LRO, but superfluidity nevertheless emerges at a nonzero $T_{text{c}}$ via the infinite-order Berezinskii-Kosterlitz-Thouless (BKT) transition, which is associated with a universal jump in the superfluid density $n_{text{s}}$ without any discontinuities in the fluids thermodynamic properties. BKT superfluids are also predicted to support two sounds, but the observation of this has remained elusive. Here we observe first and second sound in a homogeneous 2D atomic Bose gas, and from the two temperature-dependent sound speeds extract its superfluid density. Our results agree with BKT theory, including the prediction for the universal superfluid-density jump.



rate research

Read More

We study the critical point for the emergence of coherence in a harmonically trapped two-dimensional Bose gas with tuneable interactions. Over a wide range of interaction strengths we find excellent agreement with the classical-field predictions for the critical point of the Berezinskii-Kosterlitz-Thouless (BKT) superfluid transition. This allows us to quantitatively show, without any free parameters, that the interaction-driven BKT transition smoothly converges onto the purely quantum-statistical Bose-Einstein condensation (BEC) transition in the limit of vanishing interactions.
We experimentally investigate the first-order correlation function of a trapped Fermi gas in the two-dimensional BEC-BCS crossover. We observe a transition to a low-temperature superfluid phase with algebraically decaying correlations. We show that the spatial coherence of the entire trapped system can be characterized by a single temperature-dependent exponent. We find the exponent at the transition to be constant over a wide range of interaction strengths across the crossover. This suggests that the phase transitions in both the bosonic regime and the strongly interacting crossover regime are of Berezinskii-Kosterlitz-Thouless-type and lie within the same universality class. On the bosonic side of the crossover, our data are well-described by Quantum Monte Carlo calculations for a Bose gas. In contrast, in the strongly interacting regime, we observe a superfluid phase which is significantly influenced by the fermionic nature of the constituent particles.
223 - Ze Hu , Zhen Ma , Yuan-Da Liao 2020
The Berezinskii-Kosterlitz-Thouless (BKT) mechanism, building upon proliferation of topological defects in 2D systems, is the first example of phase transition beyond the Landau-Ginzburg paradigm of symmetry breaking. Such a topological phase transition has long been sought yet undiscovered directly in magnetic materials. Here, we pin down two transitions that bound a BKT phase in an ideal 2D frustrated magnet TmMgGaO$_4$, via nuclear magnetic resonance under in-plane magnetic fields, which do not disturb the low-energy electronic states and allow BKT fluctuations to be detected sensitively. Moreover, by applying out-of-plane fields, we find a critical scaling behaviour of the magnetic susceptibility expected for the BKT transition. The experimental findings can be explained by quantum Monte Carlo simulations applied on an accurate triangular-lattice Ising model of the compound which hosts a BKT phase. These results provide a concrete example for the BKT phase and offer an ideal platform for future investigations on the BKT physics in magnetic materials.
Berezinskii-Kosterlitz-Thouless (BKT) transition, the topological phase transition to a quasi-long range order in a two-dimensional (2D) system, is a hallmark of low-dimensional topological physics. The recent emergence of non-Hermitian physics, particularly parity-time ($mathcal{PT}$) symmetry, raises a natural question about the fate of low-dimensional orders (e.g., BKT transition) in the presence of complex energy spectrum. Here we investigate the BKT phase transition in a 2D degenerate Fermi gas with an imaginary Zeeman field obeying $mathcal{PT}$-symmetry. Despite complex energy spectrum, $mathcal{PT}$-symmetry guarantees that the superfluid density and many other quantities are real. Surprisingly, the imaginary Zeeman field enhances the superfluid density, yielding higher BKT transition temperature than that in Hermitian systems. In the weak interaction region, the transition temperature can be much larger than that in the strong interaction limit. Our work showcases a surprising interplay between low-dimensional topological defects and non-Hermitian effects, paving the way for studying non-Hermitian low-dimensional phase transitions.
The quenched dynamics of an ultracold homogeneous atomic two-dimensional Bose gas subjected to periodic quenches across the Berezinskii-Kosterlitz-Thouless (BKT) phase transition are discussed. Specifically, we address the effect of periodic cycling of the effective atomic interaction strength between a thermal disordered state above, and a highly ordered state below the critical BKT interaction strength, by means of numerical simulations of the stochastic projected Gross-Pitaevskii equation. Probing the emerging dynamics as a function of the frequency of sinusoidal driving from low to high frequencies reveals diverse dynamical features, including phase-lagged quasi adiabatic reversible condensate formation, resonant excitation consistent with an intrinsic system relaxation timescale, and gradual establishment of dynamically-recurring or time-averaged non-equilibrium states with enhanced coherence which are neither condensed, nor thermal. Our study paves the way for experimental observation of such driven non-equilibrium ultracold superfluid states.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا