Do you want to publish a course? Click here

A diamond AGPM coronagraph for VISIR

186   0   0.0 ( 0 )
 Added by Christian Delacroix
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

In recent years, phase mask coronagraphy has become increasingly efficient in imaging the close environment of stars, enabling the search for exoplanets and circumstellar disks. Coronagraphs are ideally suited instruments, characterized by high dynamic range imaging capabilities, while preserving a small inner working angle. The AGPM (Annular Groove Phase Mask, Mawet et al. 2005) consists of a vector vortex induced by a rotationally symmetric subwavelength grating. This technique constitutes an almost unique solution to the achromatization at longer wavelengths (mid-infrared). For this reason, we have specially conceived a mid-infrared AGPM coronagraph for the forthcoming upgrade of VISIR, the mid-IR imager and spectrograph on the VLT at ESO (Paranal), in collaboration with members of the VISIR consortium. The implementation phase of the VISIR Upgrade Project is foreseen for May-August 2012, and the AGPM installed will cover the 11-13.2 {mu}m spectral range. In this paper, we present the entire fabrication process of our AGPM imprinted on a diamond substrate. Diamond is an ideal material for mid-infrared wavelengths owing to its high transparency, small dispersion, extremely low thermal expansion and outstanding mechanical and chemical properties. The design process has been performed with an algorithm based on the rigorous coupled wave analysis (RCWA), and the micro-fabrication has been carried out using nano-imprint lithography and reactive ion etching. A precise grating profile metrology has also been conducted using cleaving techniques. Finally, we show the deposit of fiducials (i.e. centering marks) with Aerosol Jet Printing (AJP). We conclude with the ultimate coronagraph expected performances.



rate research

Read More

Coronagraphy is a powerful technique to achieve high contrast imaging and hence to image faint companions around bright targets. Various concepts have been used in the visible and near-infrared regimes, while coronagraphic applications in the mid-infrared remain nowadays largely unexplored. Vector vortex phase masks based on concentric subwavelength gratings show great promise for such applications. We aim at producing and validating the first high-performance broadband focal plane phase mask coronagraphs for applications in the mid-infrared regime, and in particular the L band with a fractional bandwidth of ~16% (3.5-4.1 mu m). Based on rigorous coupled wave analysis, we designed an annular groove phase mask (AGPM) producing a vortex effect in the L band, and etched it onto a series of diamond substrates. The grating parameters were measured by means of scanning electron microscopy. The resulting components were then tested on a mid-infrared coronagraphic test bench. A broadband raw null depth of 2 x 10^{-3} was obtained for our best L-band AGPM after only a few iterations between design and manufacturing. This corresponds to a raw contrast of about 6 x 10^{-5} (10.5 mag) at 2lambda/D. This result is fully in line with our projections based on rigorous coupled wave analysis modeling, using the measured grating parameters. The sensitivity to tilt and focus has also been evaluated. After years of technological developments, mid-infrared vector vortex coronagraphs finally become a reality and live up to our expectations. Based on their measured performance, our L-band AGPMs are now ready to open a new parameter space in exoplanet imaging at major ground-based observatories.
Phase-mask coronagraphs are known to provide high contrast imaging capabilities while preserving a small inner working angle, which allows searching for exoplanets or circumstellar disks with smaller telescopes or at longer wavelengths. The AGPM (Annular Groove Phase Mask, Mawet et al. 2005) is an optical vectorial vortex coronagraph (or vector vortex) induced by a rotationally symmetric subwavelength grating (i.e. with a period smaller than {lambda}/n, {lambda} being the observed wavelength and n the refractive index of the grating substrate). In this paper, we present our first mid- infrared AGPM prototypes imprinted on a diamond substrate. We firstly give an extrapolation of the expected coronagraph performances in the N-band (~10 {mu}m), and prospects for down-scaling the technology to the most wanted L- band (~3.5 {mu}m). We then present the manufacturing and measurement results, using diamond-optimized microfabrication techniques such as nano-imprint lithography (NIL) and reactive ion etching (RIE). Finally, the subwavelength grating profile metrology combines surface metrology (scanning electron microscopy, atomic force microscopy, white light interferometry) with diffractometry on an optical polarimetric bench and cross correlation with theoretical simulations using rigorous coupled wave analysis (RCWA).
260 - K. Enya , L. Abe 2011
We present the concept of a binary shaped mask coronagraph applicable to a telescope pupil including obscuration, based on previous works on binary shaped pupil mask by citet{Kasdin2005} and citet{Vanderbei1999}. Solutions with multi-barcode masks which skip over the obscuration are shown for various types of pupil of telescope, such as SUBARU, JWST, SPICA, and other examples. The number of diffraction tails in the point spread function of the coronagraphic image is reduced to two, thus offering a large discovery angle. The concept of mask rotation is also presented, which allows post-processing removal of diffraction tails and provides a 360$^{circ}$ continuous discovery angle. It is suggested that the presented concept offers solutions which potentially allow large telescopes with segmented pupil in future to be used as platforms for an coronagraph.
64 - G. Ruane , A. Riggs , C. T. Coker 2018
Coronagraph instruments on future space telescopes will enable the direct detection and characterization of Earth-like exoplanets around Sun-like stars for the first time. The quest for the optimal optical coronagraph designs has made rapid progress in recent years thanks to the Segmented Coronagraph Design and Analysis (SCDA) initiative led by the Exoplanet Exploration Program at NASAs Jet Propulsion Laboratory. As a result, several types of high-performance designs have emerged that make use of dual deformable mirrors to (1) correct for optical aberrations and (2) suppress diffracted starlight from obstructions and discontinuities in the telescope pupil. However, the algorithms used to compute the optimal deformable mirror surface tend to be computationally intensive, prohibiting large scale design surveys. Here, we utilize the Fast Linearized Coronagraph Optimizer (FALCO), a tool that allows for rapid optimization of deformable mirror shapes, to explore trade-offs in coronagraph designs for obstructed and segmented space telescopes. We compare designs for representative shaped pupil Lyot and vortex coronagraphs, two of the most promising concepts for the LUVOIR space mission concept. We analyze the optical performance of each design, including their throughput and ability to passively suppress light from partially resolved stars in the presence of low-order aberrations. Our main result is that deformable mirror based apodization can sufficiently suppress diffraction from support struts and inter-segment gaps whose widths are on the order of $sim$0.1% of the primary mirror diameter to detect Earth-sized planets within a few tens of milliarcseconds from the star.
With the recent commissioning of ground instruments such as SPHERE or GPI and future space observatories like WFIRST-AFTA, coronagraphy should probably become the most efficient tool for identifying and characterizing extra-solar planets in the forthcoming years. Coronagraphic instruments such as Phase mask coronagraphs (PMC) are usually based on a phase mask or plate located at the telescope focal plane, spreading the starlight outside the diameter of a Lyot stop that blocks it. In this communication is investigated the capability of a PMC to act as a phase-shifting wavefront sensor for better control of the achieved star extinction ratio in presence of the coronagraphic mask. We discuss the two main implementations of the phase-shifting process, either introducing phase-shifts in a pupil plane and sensing intensity variations in an image plane, or reciprocally. Conceptual optical designs are described in both cases. Numerical simulations allow for better understanding of the performance and limitations of both options, and optimizing their fundamental parameters. In particular, they demonstrate that the phase-shifting process is a bit more efficient when implemented into an image plane, and is compatible with the most popular phase masks currently employed, i.e. four-quadrants and vortex phase masks.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا