Do you want to publish a course? Click here

A Binary Shaped Mask Coronagraph for a Segmented Pupil

272   0   0.0 ( 0 )
 Added by Keigo Enya
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the concept of a binary shaped mask coronagraph applicable to a telescope pupil including obscuration, based on previous works on binary shaped pupil mask by citet{Kasdin2005} and citet{Vanderbei1999}. Solutions with multi-barcode masks which skip over the obscuration are shown for various types of pupil of telescope, such as SUBARU, JWST, SPICA, and other examples. The number of diffraction tails in the point spread function of the coronagraphic image is reduced to two, thus offering a large discovery angle. The concept of mask rotation is also presented, which allows post-processing removal of diffraction tails and provides a 360$^{circ}$ continuous discovery angle. It is suggested that the presented concept offers solutions which potentially allow large telescopes with segmented pupil in future to be used as platforms for an coronagraph.



rate research

Read More

Searching for nearby exoplanets with direct imaging is one of the major scientific drivers for both space and ground-based programs. While the second generation of dedicated high-contrast instruments on 8-m class telescopes is about to greatly expand the sample of directly imaged planets, exploring the planetary parameter space to hitherto-unseen regions ideally down to Terrestrial planets is a major technological challenge for the forthcoming decades. This requires increasing spatial resolution and significantly improving high contrast imaging capabilities at close angular separations. Segmented telescopes offer a practical path toward dramatically enlarging telescope diameter from the ground (ELTs), or achieving optimal diameter in space. However, translating current technological advances in the domain of high-contrast imaging for monolithic apertures to the case of segmented apertures is far from trivial. SPEED (the segmented pupil experiment for exoplanet detection) is a new instrumental facility in development at the Lagrange laboratory for enabling strategies and technologies for high-contrast instrumentation with segmented telescopes. SPEED combines wavefront control including precision segment phasing architectures, wavefront shaping using two sequential high order deformable mirrors for both phase and amplitude control, and advanced coronagraphy struggled to very close angular separations (PIAACMC). SPEED represents significant investments and technology developments towards the ELT area and future spatial missions, and will offer an ideal cocoon to pave the road of technological progress in both phasing and high-contrast domains with complex/irregular apertures. In this paper, we describe the overall design and philosophy of the SPEED bench.
A coronagraphic starlight suppression system situated on a future flagship space observatory offers a promising avenue to image Earth-like exoplanets and search for biomarkers in their atmospheric spectra. One NASA mission concept that could serve as the platform to realize this scientific breakthrough is the Large UV/Optical/IR Surveyor (LUVOIR). Such a mission would also address a broad range of topics in astrophysics with a multiwavelength suite of instruments. The apodized pupil Lyot coronagraph (APLC) is one of several coronagraph design families that the community is assessing as part of NASAs Exoplanet Exploration Program Segmented aperture coronagraph design and analysis (SCDA) team. The APLC is a Lyot-style coronagraph that suppresses starlight through a series of amplitude operations on the on-axis field. Given a suite of seven plausible segmented telescope apertures, we have developed an object-oriented software toolkit to automate the exploration of thousands of APLC design parameter combinations. This has enabled us to empirically establish relationships between planet throughput and telescope aperture geometry, inner working angle, bandwidth, and contrast level. In parallel with the parameter space exploration, we have investigated several strategies to improve the robustness of APLC designs to fabrication and alignment errors. We also investigate the combination of APLC with wavefront control or complex focal plane masks to improve inner working angle and throughput. Preliminary scientific yield evaluations based on design reference mission simulations indicate the APLC is a very competitive concept for surveying the local exoEarth population with a mission like LUVOIR.
64 - G. Ruane , A. Riggs , C. T. Coker 2018
Coronagraph instruments on future space telescopes will enable the direct detection and characterization of Earth-like exoplanets around Sun-like stars for the first time. The quest for the optimal optical coronagraph designs has made rapid progress in recent years thanks to the Segmented Coronagraph Design and Analysis (SCDA) initiative led by the Exoplanet Exploration Program at NASAs Jet Propulsion Laboratory. As a result, several types of high-performance designs have emerged that make use of dual deformable mirrors to (1) correct for optical aberrations and (2) suppress diffracted starlight from obstructions and discontinuities in the telescope pupil. However, the algorithms used to compute the optimal deformable mirror surface tend to be computationally intensive, prohibiting large scale design surveys. Here, we utilize the Fast Linearized Coronagraph Optimizer (FALCO), a tool that allows for rapid optimization of deformable mirror shapes, to explore trade-offs in coronagraph designs for obstructed and segmented space telescopes. We compare designs for representative shaped pupil Lyot and vortex coronagraphs, two of the most promising concepts for the LUVOIR space mission concept. We analyze the optical performance of each design, including their throughput and ability to passively suppress light from partially resolved stars in the presence of low-order aberrations. Our main result is that deformable mirror based apodization can sufficiently suppress diffraction from support struts and inter-segment gaps whose widths are on the order of $sim$0.1% of the primary mirror diameter to detect Earth-sized planets within a few tens of milliarcseconds from the star.
Modern coronagraph design relies on advanced, large-scale optimization processes that require an ever increasing amount of computational resources. In this paper, we restrict ourselves to the design of Apodized Pupil Lyot Coronagraphs (APLCs). To produce APLC designs for future giant space telescopes, we require a fine sampling for the apodizer to resolve all small features, such as segment gaps, in the telescope pupil. Additionally, we require the coronagraph to operate in broadband light and be insensitive to small misalignments of the Lyot stop. For future designs we want to include passive suppression of low-order aberrations and finite stellar diameters. The memory requirements for such an optimization would exceed multiple terabytes for the problem matrix alone. We therefore want to reduce the number of variables and constraints to minimize the size of the problem matrix. We show how symmetries in the pupil and Lyot stop are expressed in the complete optimization problem, and allow removal of both variables and constraints. Each mirror symmetry reduces the problem size by a factor of four. Secondly, we introduce progressive refinement, which uses low-resolution optimizations as a prior for higher resolutions. This lets us remove the majority of variables from the high-resolution optimization. Together these two improvements require up to 256x less computer memory, with a corresponding speed increase. This allows for greater exploration of the phase space of the focal-plane mask and Lyot-stop geometry, and easier simulation of sensitivity to Lyot-stop misalignments. Moreover, apodizers can now be optimized at their native manufactured resolution.
Due to the limited number of photons, directly imaging planets requires long integration times with a coronagraphic instrument. The wavefront must be stable on the same time scale, which is often difficult in space due to thermal variations and other mechanical instabilities. In this paper, we discuss the implications on future space mission observing conditions of our recent laboratory demonstration of a dark zone maintenance (DZM) algorithm. The experiments are performed on the High-contrast imager for Complex Aperture Telescopes (HiCAT) at the Space Telescope Science Institute (STScI). The testbed contains a segmented aperture, a pair of continuous deformable mirrors (DMs), and a lyot coronagraph. The segmented aperture injects high order wavefront aberration drifts into the system which are then corrected by the DMs downstream via the DZM algorithm. We investigate various drift modes including segmented aperture drift, all three DMs drift simultaneously, and drift correction at multiple wavelengths.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا