Do you want to publish a course? Click here

Annular Groove Phase Mask coronagraph in diamond for mid-IR wavelengths: manufacturing assessment and performance analysis

115   0   0.0 ( 0 )
 Added by Christian Delacroix
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Phase-mask coronagraphs are known to provide high contrast imaging capabilities while preserving a small inner working angle, which allows searching for exoplanets or circumstellar disks with smaller telescopes or at longer wavelengths. The AGPM (Annular Groove Phase Mask, Mawet et al. 2005) is an optical vectorial vortex coronagraph (or vector vortex) induced by a rotationally symmetric subwavelength grating (i.e. with a period smaller than {lambda}/n, {lambda} being the observed wavelength and n the refractive index of the grating substrate). In this paper, we present our first mid- infrared AGPM prototypes imprinted on a diamond substrate. We firstly give an extrapolation of the expected coronagraph performances in the N-band (~10 {mu}m), and prospects for down-scaling the technology to the most wanted L- band (~3.5 {mu}m). We then present the manufacturing and measurement results, using diamond-optimized microfabrication techniques such as nano-imprint lithography (NIL) and reactive ion etching (RIE). Finally, the subwavelength grating profile metrology combines surface metrology (scanning electron microscopy, atomic force microscopy, white light interferometry) with diffractometry on an optical polarimetric bench and cross correlation with theoretical simulations using rigorous coupled wave analysis (RCWA).



rate research

Read More

Context. The Annular Groove Phase Mask (AGPM) is one possible implementation of the vector vortex coronagraph, where the helical phase ramp is produced by a concentric subwavelength grating. For several years, we have been manufacturing AGPMs by etching gratings into synthetic diamond substrates using inductively coupled plasma etching. Aims. We aim to design, fabricate, optimize, and evaluate new L-band AGPMs that reach the highest possible coronagraphic performance, for applications in current and forthcoming infrared high-contrast imagers. Methods. Rigorous coupled wave analysis (RCWA) is used for designing the subwavelength grating of the phase mask. Coronagraphic performance evaluation is performed on a dedicated optical test bench. The experimental results of the performance evaluation are then used to accurately determine the actual profile of the fabricated gratings, based on RCWA modeling. Results. The AGPM coronagraphic performance is very sensitive to small errors in etch depth and grating profile. Most of the fabricated components therefore show moderate performance in terms of starlight rejection (a few 100:1 in the best cases). Here we present new processes for re-etching the fabricated components in order to optimize the parameters of the grating and hence significantly increase their coronagraphic performance. Starlight rejection up to 1000:1 is demonstrated in a broadband L filter on the coronagraphic test bench, which corresponds to a raw contrast of about 1e-5 at two resolution elements from the star for a perfect input wave front on a circular, unobstructed aperture. Conclusions. Thanks to their exquisite performance, our latest L-band AGPMs are good candidates for installation in state-of-the-art and future high-contrast thermal infrared imagers, such as METIS for the E-ELT.
Less than 3% of the known exoplanets were directly imaged for two main reasons. They are angularly very close to their parent star, which is several magnitudes brighter. Direct imaging of exoplanets thus requires a dedicated instrumentation with large telescopes and accurate wavefront control devices for high-angular resolution and coronagraphs for attenuating the stellar light. Coronagraphs are usually chromatic and they cannot perform high-contrast imaging over a wide spectral bandwidth. That chromaticity will be critical for future instruments. Enlarging the coronagraph spectral range is a challenge for future exoplanet imaging instruments on both space-based and ground-based telescopes. We propose the multi-stage four-quadrant phase mask that associates several monochromatic four-quadrant phase mask coronagraphs in series. Monochromatic device performance has already been demonstrated and the manufacturing procedures are well-under control since their development for previous instruments on VLT and JWST. The multi-stage implementation simplicity is thus appealing. We present the instrument principle and we describe the laboratory performance for large spectral bandwidths and for both pupil shapes for space- (off-axis telescope) and ground-based (E-ELT) telescopes. The multi-stage four-quadrant phase mask reduces the stellar flux over a wide spectral range (30%) and it is a very good candidate to be associated with a spectrometer for future exoplanet imaging instruments in ground- and space-based observatories.
In recent years, phase mask coronagraphy has become increasingly efficient in imaging the close environment of stars, enabling the search for exoplanets and circumstellar disks. Coronagraphs are ideally suited instruments, characterized by high dynamic range imaging capabilities, while preserving a small inner working angle. The AGPM (Annular Groove Phase Mask, Mawet et al. 2005) consists of a vector vortex induced by a rotationally symmetric subwavelength grating. This technique constitutes an almost unique solution to the achromatization at longer wavelengths (mid-infrared). For this reason, we have specially conceived a mid-infrared AGPM coronagraph for the forthcoming upgrade of VISIR, the mid-IR imager and spectrograph on the VLT at ESO (Paranal), in collaboration with members of the VISIR consortium. The implementation phase of the VISIR Upgrade Project is foreseen for May-August 2012, and the AGPM installed will cover the 11-13.2 {mu}m spectral range. In this paper, we present the entire fabrication process of our AGPM imprinted on a diamond substrate. Diamond is an ideal material for mid-infrared wavelengths owing to its high transparency, small dispersion, extremely low thermal expansion and outstanding mechanical and chemical properties. The design process has been performed with an algorithm based on the rigorous coupled wave analysis (RCWA), and the micro-fabrication has been carried out using nano-imprint lithography and reactive ion etching. A precise grating profile metrology has also been conducted using cleaving techniques. Finally, we show the deposit of fiducials (i.e. centering marks) with Aerosol Jet Printing (AJP). We conclude with the ultimate coronagraph expected performances.
185 - N. Murakami , R. Uemura , N. Baba 2008
We present numerical simulations and laboratory experiments on an eight-octant phase-mask (EOPM) coronagraph. The numerical simulations suggest that an achievable contrast for the EOPM coronagraph can be greatly improved as compared to that of a four-quadrant phase-mask (FQPM) coronagraph for a partially resolved star. On-sky transmission maps reveal that the EOPM coronagraph has relatively high optical throughput, a small inner working angle and large discovery space. We have manufactured an eight-segment phase mask utilizing a nematic liquid-crystal device, which can be easily switched between the FQPM and the EOPM modes. The laboratory experiments demonstrate that the EOPM coronagraph has a better tolerance of the tip-tilt error than the FQPM one. We also discuss feasibility of a fully achromatic and high-throughput EOPM coronagraph utilizing a polarization interferometric technique.
260 - K. Enya , L. Abe 2011
We present the concept of a binary shaped mask coronagraph applicable to a telescope pupil including obscuration, based on previous works on binary shaped pupil mask by citet{Kasdin2005} and citet{Vanderbei1999}. Solutions with multi-barcode masks which skip over the obscuration are shown for various types of pupil of telescope, such as SUBARU, JWST, SPICA, and other examples. The number of diffraction tails in the point spread function of the coronagraphic image is reduced to two, thus offering a large discovery angle. The concept of mask rotation is also presented, which allows post-processing removal of diffraction tails and provides a 360$^{circ}$ continuous discovery angle. It is suggested that the presented concept offers solutions which potentially allow large telescopes with segmented pupil in future to be used as platforms for an coronagraph.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا