Do you want to publish a course? Click here

Strongly correlated states of trapped ultracold fermions in deformed Landau levels

141   0   0.0 ( 0 )
 Added by Michele Burrello
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyze the strongly correlated regime of a two-component trapped ultracold fermionic gas in a synthetic non-Abelian U(2) gauge potential, that consists of both a magnetic field and a homogeneous spin-orbit coupling. This gauge potential deforms the Landau levels (LLs) with respect to the Abelian case and exchanges their ordering as a function of the spin-orbit coupling. In view of experimental realizations, we show that a harmonic potential combined with a Zeeman term, gives rise to an angular momentum term, which can be used to test the stability of the correlated states obtained through interactions. We derive the Haldane pseudopotentials (HPs) describing the interspecies contact interaction within a lowest LL approximation. Unlike ordinary fractional quantum Hall systems and ultracold bosons with short-range interactions in the same gauge potential, the HPs for sufficiently strong non-Abelian fields show an unconventional non-monotonic behaviour in the relative angular momentum. Exploiting this property, we study the occurrence of new incompressible ground states as a function of the total angular momentum. In the first deformed Landau level (DLL) we obtain Laughlin and Jain states. Instead, in the second DLL three classes of stabilized states appear: Laughlin states, a series of intermediate strongly correlated states and finally vortices of the integer quantum Hall state. Remarkably, in the intermediate regime, the non-monotonic HPs of the second DLL induce two-particle correlations which are reminiscent of paired states such as the Haffnian state. Via exact diagonalization in the disk geometry, we compute experimentally relevant observables such as density profiles and correlations, and we study the entanglement spectra as a further tool to characterize the obtained strongly correlated states.



rate research

Read More

Correlations between particles can lead to subtle and sometimes counterintuitive phenomena. We analyze one such case, occurring during the sudden expansion of fermions in a lattice when the initial state has a strong admixture of double occupancies. We promote the notion of quantum distillation: during the expansion, and in the presence of strongly repulsive interactions, doublons group together, forming a nearly ideal band insulator, which is metastable with a low entropy. We propose that this effect could be used for cooling purposes in experiments with two-component Fermi gases.
Our goal is to understand the phenomena arising in optical lattice fermions at low temperature in an external magnetic field. Varying the field, the attraction between any two fermions can be made arbitrarily strong, where composite bosons form via so-called Feshbach resonances. By setting up strong-coupling equations for fermions, we find that in spatial dimension $d>2$ they couple to bosons which dress up fermions and lead to new massive composite fermions. At low enough temperature, we obtain the critical temperature at which composite bosons undergo the Bose-Einstein condensate (BEC), leading to BEC-dressing massive fermions. These form tightly bound pair states which are new bosonic quasi-particles producing a BEC-type condensate. A quantum critical point is found and the formation of condensates of complex quasi-particles is speculated over.
Strongly correlated materials are expected to feature unconventional transport properties, such that charge, spin, and heat conduction are potentially independent probes of the dynamics. In contrast to charge transport, the measurement of spin transport in such materials is highly challenging. We observed spin conduction and diffusion in a system of ultracold fermionic atoms that realizes the half-filled Fermi-Hubbard model. For strong interactions, spin diffusion is driven by super-exchange and doublon-hole-assisted tunneling, and strongly violates the quantum limit of charge diffusion. The technique developed in this work can be extended to finite doping, which can shed light on the complex interplay between spin and charge in the Hubbard model.
The exchange coupling between quantum mechanical spins lies at the origin of quantum magnetism. We report on the observation of nearest-neighbor magnetic spin correlations emerging in the many-body state of a thermalized Fermi gas in an optical lattice. The key to obtaining short-range magnetic order is a local redistribution of entropy within the lattice structure. This is achieved in a tunable-geometry optical lattice, which also enables the detection of the magnetic correlations. We load a low-temperature two-component Fermi gas with repulsive interactions into either a dimerized or an anisotropic simple cubic lattice. For both systems the correlations manifest as an excess number of singlets as compared to triplets consisting of two atoms with opposite spins. For the anisotropic lattice, we determine the transverse spin correlator from the singlet-triplet imbalance and observe antiferromagnetic correlations along one spatial axis. Our work paves the way for addressing open problems in quantum magnetism using ultracold fermions in optical lattices as quantum simulators.
Symmetry plays a fundamental role in understanding complex quantum matter, particularly in classifying topological quantum phases, which have attracted great interests in the recent decade. An outstanding example is the time-reversal invariant topological insulator, a symmetry-protected topological (SPT) phase in the symplectic class of the Altland-Zirnbauer classification. We report the observation for ultracold atoms of a noninteracting SPT band in a one-dimensional optical lattice and study quench dynamics between topologically distinct regimes. The observed SPT band can be protected by a magnetic group and a nonlocal chiral symmetry, with the band topology being measured via Bloch states at symmetric momenta. The topology also resides in far-from-equilibrium spin dynamics, which are predicted and observed in experiment to exhibit qualitatively distinct behaviors in quenching to trivial and nontrivial regimes, revealing two fundamental types of spin-relaxation dynamics related to bulk topology. This work opens the way to expanding the scope of SPT physics with ultracold atoms and studying nonequilibrium quantum dynamics in these exotic systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا