Do you want to publish a course? Click here

Quantum distillation: dynamical generation of low-entropy states of strongly correlated fermions in an optical lattice

228   0   0.0 ( 0 )
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Correlations between particles can lead to subtle and sometimes counterintuitive phenomena. We analyze one such case, occurring during the sudden expansion of fermions in a lattice when the initial state has a strong admixture of double occupancies. We promote the notion of quantum distillation: during the expansion, and in the presence of strongly repulsive interactions, doublons group together, forming a nearly ideal band insulator, which is metastable with a low entropy. We propose that this effect could be used for cooling purposes in experiments with two-component Fermi gases.



rate research

Read More

We analyze the strongly correlated regime of a two-component trapped ultracold fermionic gas in a synthetic non-Abelian U(2) gauge potential, that consists of both a magnetic field and a homogeneous spin-orbit coupling. This gauge potential deforms the Landau levels (LLs) with respect to the Abelian case and exchanges their ordering as a function of the spin-orbit coupling. In view of experimental realizations, we show that a harmonic potential combined with a Zeeman term, gives rise to an angular momentum term, which can be used to test the stability of the correlated states obtained through interactions. We derive the Haldane pseudopotentials (HPs) describing the interspecies contact interaction within a lowest LL approximation. Unlike ordinary fractional quantum Hall systems and ultracold bosons with short-range interactions in the same gauge potential, the HPs for sufficiently strong non-Abelian fields show an unconventional non-monotonic behaviour in the relative angular momentum. Exploiting this property, we study the occurrence of new incompressible ground states as a function of the total angular momentum. In the first deformed Landau level (DLL) we obtain Laughlin and Jain states. Instead, in the second DLL three classes of stabilized states appear: Laughlin states, a series of intermediate strongly correlated states and finally vortices of the integer quantum Hall state. Remarkably, in the intermediate regime, the non-monotonic HPs of the second DLL induce two-particle correlations which are reminiscent of paired states such as the Haffnian state. Via exact diagonalization in the disk geometry, we compute experimentally relevant observables such as density profiles and correlations, and we study the entanglement spectra as a further tool to characterize the obtained strongly correlated states.
The exchange coupling between quantum mechanical spins lies at the origin of quantum magnetism. We report on the observation of nearest-neighbor magnetic spin correlations emerging in the many-body state of a thermalized Fermi gas in an optical lattice. The key to obtaining short-range magnetic order is a local redistribution of entropy within the lattice structure. This is achieved in a tunable-geometry optical lattice, which also enables the detection of the magnetic correlations. We load a low-temperature two-component Fermi gas with repulsive interactions into either a dimerized or an anisotropic simple cubic lattice. For both systems the correlations manifest as an excess number of singlets as compared to triplets consisting of two atoms with opposite spins. For the anisotropic lattice, we determine the transverse spin correlator from the singlet-triplet imbalance and observe antiferromagnetic correlations along one spatial axis. Our work paves the way for addressing open problems in quantum magnetism using ultracold fermions in optical lattices as quantum simulators.
Discontinuous quantum phase transitions and the associated metastability play central roles in diverse areas of physics ranging from ferromagnetism to false vacuum decay in the early universe. Using strongly-interacting ultracold atoms in an optical lattice, we realize a driven many-body system whose quantum phase transition can be tuned from continuous to discontinuous. Resonant shaking of a one-dimensional optical lattice hybridizes the lowest two Bloch bands, driving a novel transition from a Mott insulator to a $pi$-superfluid, i.e., a superfluid state with staggered phase order. For weak shaking amplitudes, this transition is discontinuous (first-order) and the system can remain frozen in a metastable state, whereas for strong shaking, it undergoes a continuous transition toward a $pi$-superfluid. Our observations of this metastability and hysteresis are in good quantitative agreement with numerical simulations and pave the way for exploring the crucial role of quantum fluctuations in discontinuous transitions.
629 - M. L. Wall , L. D. Carr 2012
We analyze a system of two-component fermions which interact via a Feshbach resonance in the presence of a three-dimensional lattice potential. By expressing a two-channel model of the resonance in the basis of Bloch states appropriate for the lattice, we derive an eigenvalue equation for the two-particle bound states which is nonlinear in the energy eigenvalue. Compact expressions for the interchannel matrix elements, numerical methods for the solution of the nonlinear eigenvalue problem, and a renormalization procedure to remove ultraviolet divergences are presented. From the structure of the two-body solutions we identify the relevant degrees of freedom which describe the resonance behavior in the lowest Bloch band. These degrees of freedom, which we call dressed molecules, form an effective closed channel in a many-body model of the resonance, the Fermi resonance Hamiltonian (FRH). It is shown how the properties of the FRH can be determined numerically by solving a projected lattice two-channel model at the two-particle level. As opposed to single-channel lattice models such as the Hubbard model, the FRH is valid for general s-wave scattering length and resonance width. Hence, the FRH provides an accurate description of the BEC-BCS crossover for ultracold fermions on an optical lattice.
We show that, for fermionic atoms in a one-dimensional optical lattice, the fraction of atoms in doubly occupied sites is a highly non-monotonic function of temperature. We demonstrate that this property persists even in the presence of realistic harmonic confinement, and that it leads to a suppression of entropy at intermediate temperatures that offers a route to adiabatic cooling. Our interpretation of the suppression is that such intermediate temperatures are simultaneously too high for quantum coherence and too low for significant thermal excitation of double occupancy thus offering a clear indicator of the onset of quantum fluctuations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا