Do you want to publish a course? Click here

The Mass Profile and Shape of Bars in the Spitzer Survey of Stellar Structure in Galaxies (S4G): Search for an Age Indicator for Bars

358   0   0.0 ( 0 )
 Added by Taehyun Kim Ms.
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have measured the radial light profiles and global shapes of bars using two-dimensional 3.6 $mu m $ image decompositions for 144 face-on barred galaxies from the Spitzer Survey of Stellar Structure in Galaxies (S4G). The bar surface brightness profile is correlated with the stellar mass and bulge-to-total (B/T) ratio of their host galaxies. Bars in massive and bulge-dominated galaxies (B/T$>$0.2) show a flat profile, while bars in less massive, disk-dominated galaxies (B/T$sim$0) show an exponential, disk-like profile with a wider spread in the radial profile than in the bulge-dominated galaxies. The global two-dimensional shapes of bars, however, are rectangular/boxy, independent of the bulge or disk properties. We speculate that because bars are formed out of disk, bars initially have an exponential (disk-like) profile which evolves over time, trapping more stars into the boxy bar orbits. This leads bars to become stronger and have flatter profiles. The narrow spread of bar radial profiles in more massive disks suggests that these bars formed earlier (z$>$1), while the disk-like profiles and a larger spread in the radial profile in less massive systems imply a later and more gradual evolution, consistent with the cosmological evolution of bars inferred from observational studies. Therefore, we expect that the flatness of the bar profile can be used as a dynamical age indicator of the bar to measure the time elapsed since the bar formation. We argue that cosmic gas accretion is required to explain our results on bar profile and the presence of gas within the bar region.



rate research

Read More

The Spitzer Survey of Stellar Structure in Galaxies (S4G) is a volume, magnitude, and size-limited survey of 2352 nearby galaxies with deep imaging at 3.6 and 4.5um. In this paper we describe our surface photometry pipeline and showcase the associated data products that we have released to the community. We also identify the physical mechanisms leading to different levels of central stellar mass concentration for galaxies with the same total stellar mass. Finally, we derive the local stellar mass-size relation at 3.6um for galaxies of different morphologies. Our radial profiles reach stellar mass surface densities below 1 Msun pc-2. Given the negligible impact of dust and the almost constant mass-to-light ratio at these wavelengths, these profiles constitute an accurate inventory of the radial distribution of stellar mass in nearby galaxies. From these profiles we have also derived global properties such as asymptotic magnitudes (and the corresponding stellar masses), isophotal sizes and shapes, and concentration indices. These and other data products from our various pipelines (science-ready mosaics, object masks, 2D image decompositions, and stellar mass maps), can be publicly accessed at IRSA (http://irsa.ipac.caltech.edu/data/SPITZER/S4G/).
The Spitzer Survey of Stellar Structure in Galaxies (S4G) is the largest available database of deep, homogeneous middle-infrared (mid-IR) images of galaxies of all types. The survey, which includes 2352 nearby galaxies, reveals galaxy morphology only minimally affected by interstellar extinction. This paper presents an atlas and classifications of S4G galaxies in the Comprehensive de Vaucouleurs revised Hubble-Sandage (CVRHS) system. The CVRHS system follows the precepts of classical de Vaucouleurs (1959) morphology, modified to include recognition of other features such as inner, outer, and nuclear lenses, nuclear rings, bars, and disks, spheroidal galaxies, X patterns and box/peanut structures, OLR subclass outer rings and pseudorings, bar ansae and barlenses, parallel sequence late-types, thick disks, and embedded disks in 3D early-type systems. We show that our CVRHS classifications are internally consistent, and that nearly half of the S4G sample consists of extreme late-type systems (mostly bulgeless, pure disk galaxies) in the range Scd-Im. The most common family classification for mid-IR types S0/a to Sc is SA while that for types Scd to Sm is SB. The bars in these two type domains are very different in mid-IR structure and morphology. This paper examines the bar, ring, and type classification fractions in the sample, and also includes several montages of images highlighting the various kinds of stellar structures seen in mid-IR galaxy morphology.
Inner bars are frequent structures in the local Universe and thought to substantially influence the nuclear regions of disc galaxies. In this study we explore the structure and dynamics of inner bars by deriving maps and radial profiles of their mean stellar population content and comparing them to previous findings in the context of main bars. To this end, we exploit observations obtained with the integral-field spectrograph MUSE of three double-barred galaxies in the TIMER sample. The results indicate that inner bars can be distinguished based on their stellar population properties alone. More precisely, inner bars show elevated metallicities and depleted [$alpha$/Fe] abundances. Although they exhibit slightly younger stellar ages compared to the nuclear disc, the typical age differences are small, except at their outer ends. These ends of the inner bars are clearly younger compared to their inner parts, an effect known from main bars as orbital age separation. In particular, the youngest stars (i.e. those with the lowest radial velocity dispersion) seem to occupy the most elongated orbits along the (inner) bar major axis. We speculate that these distinct ends of bars could be connected to the morphological feature of ansae. Radial profiles of metallicity and [$alpha$/Fe] enhancements are flat along the inner bar major axis, but show significantly steeper slopes along the minor axis. This radial mixing in the inner bar is also known from main bars and indicates that inner bars significantly affect the radial distribution of stars. In summary, based on maps and radial profiles of the mean stellar population content and in line with previous TIMER results, inner bars appear to be scaled do
139 - B.W. Holwerda 2013
The morphology of galaxies can be quantified to some degree using a set of scale-invariant parameters. Concentration (C), Asymmetry (A), Smoothness (S), the Gini index (G), relative contribution of the brightest pixels to the second order moment of the flux (M20), ellipticity (E), and the Gini index of the second order moment (GM) have all been applied to morphologically classify galaxies at various wavelengths. Here we present a catalog of these parameters for the Spitzer Survey of Stellar Structure in Galaxies (S4G), a volume-limited near-infrared imaging survey of nearby galaxies using the 3.6 and 4.5 micron channels of the IRAC camera. Our goal is to provide a reference catalog of near-infrared quantified morphology for high-redshift studies and galaxy evolution models with enough detail to resolve stellar mass morphology. We explore where normal, non-interacting galaxies -those typically found on the Hubble tuning fork- lie in this parameter space and show that there is a tight relation between Concentration and M20 for normal galaxies. M20 can be used to classify galaxies into earlier and later types (e.g., to separate spirals from irregulars). Several criteria using these parameters exist to select systems with a disturbed morphology, i.e., those that appear to be undergoing a tidal interaction. We examine the applicability of these criteria to Spitzer near-infrared imaging. We find that four relations, based on the parameters A&S, G&M20, GM, and C&M20, respectively, select outliers in the morphological parameter space, but each selects different subsets of galaxies. Two criteria (GM > 0.6, G > -0.115 x M20 + 0.384) seem most appropriate to identify possible mergers and the merger fraction in near-infrared surveys. We find no strong relation between lopsidedness and most of these morphological parameters, except for a weak dependence of lopsidedness on Concentration and M20.
Minor merger of galaxies are common during the evolutionary phase of galaxies. Here, we investigate the dynamical impact of a minor merger (mass ratio 1:10) event on the final fate of a stellar bar in the merger remnant. To achieve that, we choose a set of minor merger models from the publicly available GalMer library of galaxy merger simulations. The models differ in terms of their orbital energy, orientation of the orbital spin vector, and morphology of the satellite galaxy (discy/spheroidal). We demonstrate that the central stellar bar, initially present in the host galaxy, undergoes a transient bar amplification phase after each pericentre passage of the satellite; in concordance with past studies of bar excitation due to tidal encounter. However, once the merger happens, the central stellar bar weakens substantially in the post-merger remnants. The accumulation of satellites stars in the central region of merger remnant plays a key role in the bar weakening process; causing a net increase in the central mass concentration as well as in the specific angular momentum content. We find that the efficiency of mass accumulation from the satellite in the central parts of merger remnants depends on the orbital parameters as well as on the satellites morphology. Consequently, different minor merger models display different degrees of bar weakening event. This demonstrates that minor merger of galaxies is a plausible avenue for bar weakening in disc galaxies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا