Do you want to publish a course? Click here

Galaxies within galaxies in the TIMER survey: stellar populations of inner bars are scaled replicas of main bars

93   0   0.0 ( 0 )
 Added by Adrian Bittner
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Inner bars are frequent structures in the local Universe and thought to substantially influence the nuclear regions of disc galaxies. In this study we explore the structure and dynamics of inner bars by deriving maps and radial profiles of their mean stellar population content and comparing them to previous findings in the context of main bars. To this end, we exploit observations obtained with the integral-field spectrograph MUSE of three double-barred galaxies in the TIMER sample. The results indicate that inner bars can be distinguished based on their stellar population properties alone. More precisely, inner bars show elevated metallicities and depleted [$alpha$/Fe] abundances. Although they exhibit slightly younger stellar ages compared to the nuclear disc, the typical age differences are small, except at their outer ends. These ends of the inner bars are clearly younger compared to their inner parts, an effect known from main bars as orbital age separation. In particular, the youngest stars (i.e. those with the lowest radial velocity dispersion) seem to occupy the most elongated orbits along the (inner) bar major axis. We speculate that these distinct ends of bars could be connected to the morphological feature of ansae. Radial profiles of metallicity and [$alpha$/Fe] enhancements are flat along the inner bar major axis, but show significantly steeper slopes along the minor axis. This radial mixing in the inner bar is also known from main bars and indicates that inner bars significantly affect the radial distribution of stars. In summary, based on maps and radial profiles of the mean stellar population content and in line with previous TIMER results, inner bars appear to be scaled do



rate research

Read More

Stellar populations in barred galaxies save an imprint of the influence of the bar on the host galaxys evolution. We present a detailed analysis of star formation histories (SFHs) and chemical enrichment of stellar populations in nine nearby barred galaxies from the TIMER project. We use integral field observations with the MUSE instrument to derive unprecedented spatially resolved maps of stellar ages, metallicities, [Mg/Fe] abundances and SFHs, as well as H$alpha$ as a tracer of ongoing star formation. We find a characteristic V-shaped signature in the SFH perpendicular to the bar major axis which supports the scenario where intermediate age stars ($sim 2$-$6 mathrm{Gyr}$) are trapped on more elongated orbits shaping a thinner part of the bar, while older stars ($> 8 mathrm{Gyr}$) are trapped on less elongated orbits shaping a rounder and thicker part of the bar. We compare our data to state-of-the-art cosmological magneto-hydrodynamical simulations of barred galaxies and show that such V-shaped SFHs arise naturally due to the dynamical influence of the bar on stellar populations with different ages and kinematic properties. Additionally, we find an excess of very young stars ($< 2 mathrm{Gyr}$) on the edges of the bars, predominantly on the leading side, confirming typical star formation patterns in bars. Furthermore, mass-weighted age and metallicity gradients are slightly shallower along the bar than in the disc likely due to orbital mixing in the bar. Finally, we find that bars are mostly more metal-rich and less [Mg/Fe]-enhanced than the surrounding discs. We interpret this as a signature that the bar quenches star formation in the inner region of discs, usually referred to as star formation deserts. We discuss these results and their implications on two different scenarios of bar formation and evolution.
Minor merger of galaxies are common during the evolutionary phase of galaxies. Here, we investigate the dynamical impact of a minor merger (mass ratio 1:10) event on the final fate of a stellar bar in the merger remnant. To achieve that, we choose a set of minor merger models from the publicly available GalMer library of galaxy merger simulations. The models differ in terms of their orbital energy, orientation of the orbital spin vector, and morphology of the satellite galaxy (discy/spheroidal). We demonstrate that the central stellar bar, initially present in the host galaxy, undergoes a transient bar amplification phase after each pericentre passage of the satellite; in concordance with past studies of bar excitation due to tidal encounter. However, once the merger happens, the central stellar bar weakens substantially in the post-merger remnants. The accumulation of satellites stars in the central region of merger remnant plays a key role in the bar weakening process; causing a net increase in the central mass concentration as well as in the specific angular momentum content. We find that the efficiency of mass accumulation from the satellite in the central parts of merger remnants depends on the orbital parameters as well as on the satellites morphology. Consequently, different minor merger models display different degrees of bar weakening event. This demonstrates that minor merger of galaxies is a plausible avenue for bar weakening in disc galaxies.
With the aim of assessing if low surface brightness galaxies host stellar bars, and study the dependence of the occurrence of bars as a function of surface brightness, we use the Galaxy Zoo 2 dataset to construct a large volume-limited sample of galaxies, and segregate the galaxies as low and high surface brightness in terms of their central surface brightness. We find that the fraction of low surface brightness galaxies hosting strong bars is systematically lower than the one found for high surface brightness galaxies. The dependence of the bar fraction on the central surface brightness is mostly driven by a correlation of the surface brightness with the spin and the gas-richness of the galaxies, showing only a minor dependence on the surface brightness. We also find that the length of the bars shows a strong dependence on the surface brightness, and although some of this dependence is attributed to the gas content, even at fixed gas-to-stellar mass ratio, high surface brightness galaxies host longer bars than their low surface brightness counterparts, which we attribute to an anticorrelation of the surface brightness with the spin.
We have measured the radial light profiles and global shapes of bars using two-dimensional 3.6 $mu m $ image decompositions for 144 face-on barred galaxies from the Spitzer Survey of Stellar Structure in Galaxies (S4G). The bar surface brightness profile is correlated with the stellar mass and bulge-to-total (B/T) ratio of their host galaxies. Bars in massive and bulge-dominated galaxies (B/T$>$0.2) show a flat profile, while bars in less massive, disk-dominated galaxies (B/T$sim$0) show an exponential, disk-like profile with a wider spread in the radial profile than in the bulge-dominated galaxies. The global two-dimensional shapes of bars, however, are rectangular/boxy, independent of the bulge or disk properties. We speculate that because bars are formed out of disk, bars initially have an exponential (disk-like) profile which evolves over time, trapping more stars into the boxy bar orbits. This leads bars to become stronger and have flatter profiles. The narrow spread of bar radial profiles in more massive disks suggests that these bars formed earlier (z$>$1), while the disk-like profiles and a larger spread in the radial profile in less massive systems imply a later and more gradual evolution, consistent with the cosmological evolution of bars inferred from observational studies. Therefore, we expect that the flatness of the bar profile can be used as a dynamical age indicator of the bar to measure the time elapsed since the bar formation. We argue that cosmic gas accretion is required to explain our results on bar profile and the presence of gas within the bar region.
Double bars are thought to be important features for secular evolution in the central regions of galaxies. However, observational evidence about their origin and evolution is still scarce. We report on the discovery of the first Box-Peanut (B/P) structure in an inner bar detected in the face-on galaxy NGC 1291. We use the integral field data obtained from the MUSE spectrograph within the TIMER project. The B/P structure is detected as bi-symmetric minima of the $h_4$ moment of the line-of-sight velocity distribution along the major axis of the inner bar, as expected from numerical simulations. Our observations demonstrate that inner bars can follow a similar evolutionary path as outer bars, undergoing buckling instabilities. They also suggest that inner bars are long-lived structures, thus imposing tight constraints to their possible formation mechanisms
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا