Do you want to publish a course? Click here

Fate of stellar bars in minor merger of galaxies

71   0   0.0 ( 0 )
 Added by Soumavo Ghosh Dr.
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Minor merger of galaxies are common during the evolutionary phase of galaxies. Here, we investigate the dynamical impact of a minor merger (mass ratio 1:10) event on the final fate of a stellar bar in the merger remnant. To achieve that, we choose a set of minor merger models from the publicly available GalMer library of galaxy merger simulations. The models differ in terms of their orbital energy, orientation of the orbital spin vector, and morphology of the satellite galaxy (discy/spheroidal). We demonstrate that the central stellar bar, initially present in the host galaxy, undergoes a transient bar amplification phase after each pericentre passage of the satellite; in concordance with past studies of bar excitation due to tidal encounter. However, once the merger happens, the central stellar bar weakens substantially in the post-merger remnants. The accumulation of satellites stars in the central region of merger remnant plays a key role in the bar weakening process; causing a net increase in the central mass concentration as well as in the specific angular momentum content. We find that the efficiency of mass accumulation from the satellite in the central parts of merger remnants depends on the orbital parameters as well as on the satellites morphology. Consequently, different minor merger models display different degrees of bar weakening event. This demonstrates that minor merger of galaxies is a plausible avenue for bar weakening in disc galaxies.



rate research

Read More

An $m=1$ lopsided asymmetry is common in disc galaxies. Here, we investigate the excitation of an $m=1$ lopsidedness in host galaxies during minor mergers (mass ratio 1:10) while choosing a set of minor merger models (with varying orbital configurations, morphology of the host galaxy) from the GalMer library of galaxy merger simulations. We show that a minor merger triggers a prominent $m=1$ lopsidedness in the stars of the host galaxy. The strength of the $m=1$ lopsidedness undergoes a transient amplification phase after each pericentre passage of the satellite, in concordance with past findings of excitation of an $m=1$ lopsidedness due to tidal encounters. However, once the merger happens, and the post-merger remnant readjusts itself, the lopsidedness fades away in short time-scale ($sim 500-850$ Myr). Furthermore, a delayed merger can drive a prolonged ($sim 2$ Gyr) lopsidedness in the host galaxy. We demonstrate that the $m=1$ lopsidedness rotates with a well-defined pattern speed. The measured pattern speed is much slower than the $m=2$ bar pattern speed, and is retrograde with respect to the bar. This gives rise to a dynamical scenario where the Inner Linblad resonance (ILR) of the $m=1$ lopsidedness falls in between the corotation (CR) and the Outer Linblad resonance (OLR) of the $m=2$ bar mode. A kinematic lopsidedness also arises in the host galaxy, and the resulting temporal variation closely follows that of the density lopsidedness. The minor merger also triggers a transient off-centred stellar disc-dark matter halo configuration due to the tidal encounter with the satellite.
Inner bars are frequent structures in the local Universe and thought to substantially influence the nuclear regions of disc galaxies. In this study we explore the structure and dynamics of inner bars by deriving maps and radial profiles of their mean stellar population content and comparing them to previous findings in the context of main bars. To this end, we exploit observations obtained with the integral-field spectrograph MUSE of three double-barred galaxies in the TIMER sample. The results indicate that inner bars can be distinguished based on their stellar population properties alone. More precisely, inner bars show elevated metallicities and depleted [$alpha$/Fe] abundances. Although they exhibit slightly younger stellar ages compared to the nuclear disc, the typical age differences are small, except at their outer ends. These ends of the inner bars are clearly younger compared to their inner parts, an effect known from main bars as orbital age separation. In particular, the youngest stars (i.e. those with the lowest radial velocity dispersion) seem to occupy the most elongated orbits along the (inner) bar major axis. We speculate that these distinct ends of bars could be connected to the morphological feature of ansae. Radial profiles of metallicity and [$alpha$/Fe] enhancements are flat along the inner bar major axis, but show significantly steeper slopes along the minor axis. This radial mixing in the inner bar is also known from main bars and indicates that inner bars significantly affect the radial distribution of stars. In summary, based on maps and radial profiles of the mean stellar population content and in line with previous TIMER results, inner bars appear to be scaled do
Recent observations show that inner discs and rings (IDs and IRs, henceforth) are not preferably found in barred galaxies, a fact that points to the relevance of formation mechanisms different to the traditional bar-origin scenario. In contrast, the role of minor mergers in the formation of these inner components (ICs), while often invoked, is still poorly understood. We have investigated the capability of minor mergers to trigger the formation of IDs and IRs in spiral galaxies through collisionless N-body simulations. We have run a battery of minor mergers in which both primary and secondary are modelled as disc-bulge-halo galaxies with realistic density ratios. A detailed analysis of the morphology, structure, and kinematics of the ICs resulting from the minor merger has been carried out. All the simulated minor mergers develop thin ICs out of satellite material, supported by rotation. A wide morphological zoo of ICs has been obtained (including IDs, IRs, pseudo-rings, nested IDs, spiral patterns, and combinations of them), but all with structural and kinematical properties similar to observations. The existence of the resulting ICs can be deduced through the features that they imprint in the isophotal profiles and kinemetric maps of the final remnant, as in many real galaxies. The realistic density ratios used in the present models make the satellites to experience more efficient orbital circularization and disruption than in previous studies. Combined with the disc resonances induced by the encounter, these processes give place to highly aligned co- and counter-rotating ICs in the remnant centre. Therefore, minor mergers are an efficient mechanism to form rotationally-supported stellar ICs in spiral galaxies, neither requiring strong dissipation nor the development of noticeable bars (abridged).
With the aim of assessing if low surface brightness galaxies host stellar bars, and study the dependence of the occurrence of bars as a function of surface brightness, we use the Galaxy Zoo 2 dataset to construct a large volume-limited sample of galaxies, and segregate the galaxies as low and high surface brightness in terms of their central surface brightness. We find that the fraction of low surface brightness galaxies hosting strong bars is systematically lower than the one found for high surface brightness galaxies. The dependence of the bar fraction on the central surface brightness is mostly driven by a correlation of the surface brightness with the spin and the gas-richness of the galaxies, showing only a minor dependence on the surface brightness. We also find that the length of the bars shows a strong dependence on the surface brightness, and although some of this dependence is attributed to the gas content, even at fixed gas-to-stellar mass ratio, high surface brightness galaxies host longer bars than their low surface brightness counterparts, which we attribute to an anticorrelation of the surface brightness with the spin.
Mergers can be detected as double-peak narrow emission line galaxies but they are difficult to disentangle from disc rotations and gas outflows. We aim to properly detect such galaxies and distinguish the underlying mechanisms. Relying on RCSED, we developed an automated selection procedure and found 5663 double-peak emission line galaxies at z<0.34 corresponding to 0.8% of the parent database. To characterise these galaxies, we built a single-peak no-bias control sample (NBCS) with the same redshift and stellar mass distributions as the double-peak sample (DPS). These two samples are indeed very similar in terms of absolute magnitude, [OIII] luminosity, colour-colour diagrams, age and specific star formation rate, metallicity, and environment. We find an important excess of S0 galaxies in the DPS, not observed in the NBCS, and which cannot be accounted for by the environment, as most of these galaxies are isolated or in poor groups. Similarly, we find a relative deficit of pure discs in the DPS late-type galaxies, that are preferentially of Sa type. In parallel, we observe a systematic central excess of star formation and extinction for DP galaxies. Finally, there are noticeable differences in the kinematics: the gas velocity dispersion is correlated with the galaxy inclination in the NBCS, whereas this relation does not hold for the DPS. Furthermore, the DP galaxies show larger stellar velocity dispersions and they deviate from the Tully-Fisher relation for both late-type and S0 galaxies. These discrepancies can be reconciled if one considers the two peaks as two different components. Considering the morphological biases in favour, bulge-dominated galaxies and star-formation central enhancement, we suggest a scenario of multiple sequential minor mergers driving the increase of the bulge size, leading to larger fractions of S0 galaxies and a deficit of pure disc galaxies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا