Do you want to publish a course? Click here

Atomistic-continuum modeling of short laser pulse melting of Si targets

86   0   0.0 ( 0 )
 Added by Vladimir Lipp
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an atomistic-continuum model to simulate ultrashort laser-induced melting processes in semiconductor solids on the example of silicon. The kinetics of transient non-equilibrium phase transition mechanisms is addressed with a Molecular Dynamics method at atomic level, whereas the laser light absorption, strong generated electron-phonon non-equilibrium, fast diffusion and heat conduction due to photo-excited free carriers are accounted for in the continuum. We give a detailed description of the model, which is then applied to study the mechanism of short laser pulse melting of free standing Si films. The effect of laser-induced pressure and temperature of the lattice on the melting kinetics is investigated. Two competing melting mechanisms, heterogeneous and homogeneous, were identified. Apart of classical heterogeneous melting mechanism, the nucleation of the liquid phase homogeneously inside the material significantly contributes to the melting process. The simulations showed, that due to the open diamond structure of the crystal, the laser-generated internal compressive stresses reduce the crystal stability against the homogeneous melting. Consequently, the latter can take a massive character within several picoseconds upon the laser heating. Due to negative volume of melting of modeled Si material, -7.5%, the material contracts upon the phase transition, relaxes the compressive stresses and the subsequent melting proceeds heterogeneously until the excess of thermal energy is consumed. The threshold fluence value, at which homogeneous nucleation of liquid starts contributing to the classical heterogeneous propagation of the solid-liquid interface, is found from the series of simulations at different laser input fluences. On the example of Si, the laser melting kinetics of semiconductors was found to be noticeably different from that of metals with fcc crystal structure.



rate research

Read More

The fragmentation of a liquid metal droplet induced by a nanosecond laser pulse has been studied well. However, the fragmentation mechanism may be different, when a subpicosecond laser pulse is applied. To discover the details of the fragmentation process, we perform a hydrodynamic simulation of a liquid tin droplet irradiated by a femtosecond laser pulse. We have found that the pressure pulse induced by an instantaneous temperature growth in the skin layer propagates from the one side of the surface of a spherical droplet and focuses in its center; at the release a big cavity is formed at the center of a droplet; the pressure wave release at the backside surface may cause the spallation.
262 - R. K. Koju , Y. Mishin 2020
We show that molecular dynamics (MD) simulations are capable of reproducing the drag of solute segregation atmospheres by moving grain boundaries (GBs). Although lattice diffusion is frozen out on the MD timescale, the accelerated GB diffusion provides enough atomic mobility to allow the segregated atoms to follow the moving GB. This finding opens the possibility of studying the solute drag effect with atomic precision using the MD approach. We demonstrate that a moving GB activates diffusion and alters the short-range order in the lattice regions swept during its motion. It is also shown that a moving GB drags an atmosphere of non-equilibrium vacancies, which accelerate diffusion in surrounding lattice regions.
271 - T. Zhao , J. D. Weeks , D. Kandel 2004
Coarse-grained modeling of dynamics on vicinal surfaces concentrates on the diffusion of adatoms on terraces with boundary conditions at sharp steps, as first studied by Burton, Cabrera and Frank (BCF). Recent electromigration experiments on vicinal Si surfaces suggest the need for more general boundary conditions in a BCF approach. We study a discrete 1D hopping model that takes into account asymmetry in the hopping rates in the region around a step and the finite probability of incorporation into the solid at the step site. By expanding the continuous concentration field in a Taylor series evaluated at discrete sites near the step, we relate the kinetic coefficients and permeability rate in general sharp step models to the physically suggestive parameters of the hopping models. In particular we find that both the kinetic coefficients and permeability rate can be negative when diffusion is faster near the step than on terraces. These ideas are used to provide an understanding of recent electromigration experiment on Si(001) surfaces where step bunching is induced by an electric field directed at various angles to the steps.
We report on the fabrication of fractal dendrites by laser induced melting of aluminum alloys. We target boron carbide (B4C) that is one of the most effective radiation-absorbing materials which is characterised by a low coefficient of thermal expansion. Due to the high fragility of B4C crystals we were able to introduce its nanoparticles into a stabilization aluminum matrix of AA385.0. The high intensity laser field action led to the formation of composite dendrite structures under the effect of local surface melting. The modelling of the dendrite cluster growth confirms its fractal nature and sheds light on the pattern behavior of the resulting quasicrystal structure.
The Hf-O system has been modeled by combining existing experimental data and first-principles calculations results through the CALPHAD approach. Special quasirandom structures of $alpha$ and $beta$ hafnium were generated to calculate the mixing behavior of oxygen and vacancies. For the total energy of oxygen, vibrational, rotational and translational degrees of freedom were considered. The Hf-O system was combined with previously modeled Hf-Si and Si-O systems, and the ternary compound in the Hf-Si-O system, HfSiO$_4$ has been introduced to calculate the stability diagrams pertinent to the thin film processing.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا