No Arabic abstract
We show that molecular dynamics (MD) simulations are capable of reproducing the drag of solute segregation atmospheres by moving grain boundaries (GBs). Although lattice diffusion is frozen out on the MD timescale, the accelerated GB diffusion provides enough atomic mobility to allow the segregated atoms to follow the moving GB. This finding opens the possibility of studying the solute drag effect with atomic precision using the MD approach. We demonstrate that a moving GB activates diffusion and alters the short-range order in the lattice regions swept during its motion. It is also shown that a moving GB drags an atmosphere of non-equilibrium vacancies, which accelerate diffusion in surrounding lattice regions.
Oxygen vacancies have been identified to play an important role in accelerating grain growth in polycrystalline perovskite-oxide ceramics. In order to advance the fundamental understanding of growth mechanisms at the atomic scale, classical atomistic simulations were carried out to investigate the atomistic structures and oxygen vacancy formation energies at grain boundaries in the prototypical perovskite-oxide material SrTiO$_3$. In this work, we focus on two symmetric tilt grain boundaries, namely $Sigma$5(310)[001] and $Sigma$5(210)[001]. A one-dimensional continuum model is adapted to determine the electrostatic potential induced by charged lattice planes in atomistic structure models containing grain boundaries and point defects. By means of this model, electrostatic artifacts, which are inherent to supercell models with periodic or open boundary conditions, can be taken into account and corrected properly. We report calculated formation energies of oxygen vacancies on all the oxygen sites across boundaries between two misoriented grains, and we analyze and discuss the formation-energy values with respect to local charge densities at the vacant sites.
The effect of grain boundaries and wrinkles on the electrical properties of polycrystalline graphene is pronounced. Here we investigate the stitching between grains of polycrystalline graphene, specifically, overlapping of layers at the boundaries, grown by chemical vapor deposition (CVD) and subsequently doped by the oxidized Cu substrate. We analyze overlapped regions between 60 and 220 nm wide via Raman spectroscopy, and find that some of these overlapped boundaries contain AB stacked bilayers. The Raman spectra from the overlapped grain boundaries are distinctly different from bilayer graphene and exhibit splitting of the G band peak. The degree of splitting, peak widths, as well as peak intensities depend on the width of the overlap. We attribute these features to inhomogeneous doping by charge carriers (holes) across the overlapped regions via the oxidized Cu substrate. As a result, the Fermi level at the overlapped grain boundaries lies between 0.3 and 0.4 eV below the charge neutrality point. Our results suggest an enhancement of electrical conductivity across overlapped grain boundaries, similar to previously observed measurements(1). The dependence of charge distribution on the width of overlapping of grain boundaries may have strong implications for the growth of large-area graphene with enhanced conductivity.
In the paper we predict a distinctive change of magnetic properties and considerable increase of the Curie temperature caused by the strain fields of grain boundaries in ferromagnetic films. It is shown that a sheet of spontaneous magnetization may arise along a grain boundary at temperatures greater than the bulk Curie temperature. The temperature dependence and space distribution of magnetization in a ferromagnetic film with grain boundaries are calculated. We found that $45^circ$ grain boundaries can produce long-range strain fields that results in the width of the magnetic sheet along the boundary of the order of $ 0.5 div 1 mu m$ at temperatures grater than the bulk Curie temperature by about $10^2$ K.
Flexoelectricity is a type of ubiquitous and prominent electromechanical coupling, pertaining to the response of electrical polarization to mechanical strain gradients while not restricted to the symmetry of materials. However, large elastic deformation in most solids is usually difficult to achieve and the strain gradient at minuscule is challenging to control. Here we exploit the exotic structural inhomogeneity of grain boundary to achieve a huge strain gradient (~ 1.2 nm-1) within 3 ~ 4 unit-cells, and thus obtain atomic-scale flexoelectric polarization up to ~ 38 {mu}C/cm2 at a 24 LaAlO3 grain boundary. The nanoscale flexoelectricity also modifies the electrical activity of grain boundaries. Moreover, we prove that it is a general and feasible way to form large strain gradients at atomic scale by altering the misorientation angles of grain boundaries in different dielectric materials. Thus, engineering of grain boundaries provides an effective pathway to achieve tunable flexoelectricity and broadens the electromechanical functionalities of non-piezoelectric materials.
Mg grain boundary (GB) segregation and GB diffusion can impact the processing and properties of Al-Mg alloys. Yet, Mg GB diffusion in Al has not been measured experimentally or predicted by simulations. We apply atomistic computer simulations to predict the amount and the free energy of Mg GB segregation, and the impact of segregation on GB diffusion of both alloy components. At low temperatures, Mg atoms segregated to a tilt GB form clusters with highly anisotropic shapes. Mg diffuses in Al GBs slower than Al itself, and both components diffuse slowly in comparison with Al GB self-diffusion. Thus, Mg segregation significantly reduces the rate of mass transport along GBs in Al-Mg alloys. The reduced atomic mobility can be responsible for the improved stability of the microstructure at elevated temperatures.