Do you want to publish a course? Click here

Hysteretic Magnetotransport in SmB6 at Low Magnetic Fields

78   0   0.0 ( 0 )
 Added by Yun Suk Eo
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Utilizing Corbino disc structures, we have examined the magnetic field response of resistivity for the surface states of SmB6 on different crystalline surfaces at low temperatures. Our results reveal a hysteretic behavior whose magnitude depends on the magnetic field sweep rate and temperature. Although this feature becomes smaller when the field sweep is slower, a complete elimination or saturation is not observed in our slowest sweep-rate measurements, which is much slower than a typical magnetotransport trace. These observations cannot be explained by quantum interference corrections such as weak anti-localization. Instead, they are consistent with behaviors of glassy surface magnetic ordering, whose magnetic origin is most likely from samarium oxide (Sm2O3) forming on the surface during exposure to ambient conditions.

rate research

Read More

SmB6 has been predicted and verified as a prototype of topological Kondo insulators (TKIs). Here we report longitudinal magnetoresistance and Hall coefficient measurements on co-sputtered nanocrystalline SmB6 films and try to find possible signatures of their topological properties. The magnetoresistance (MR) at 2 K is positive and linear (LPMR) at low field and becomes negative and quadratic at higher field. While the negative part is known from the reduction of the hybridization gap due to Zeeman splitting, the positive dependence is similar to what has been observed in other topological insulators (TI). We conclude that the LPMR is a characteristic feature of TI and is related to the linear dispersion near the Dirac cone. The Hall resistance shows a sign change around 50 K. It peaks and becomes nonlinear at around 10 K then decreases below 10 K. This indicates that carriers with opposite signs emerge below 50 K. Two films with different geometries (thickness and lateral dimension) show contrasting behavior below and above 50K, which proves the surface origin of the low temperature carriers in these films. The temperature dependence of magnetoresistance and the Hall data indicates that the surface states are likely non-trivial.
We report an unexpected magnetic-field-driven magnetic structure in the 5f-electron Shastry- Sutherland system U2Pd2In. This phase develops at low temperatures from a noncollinear antiferromagnetic ground state above the critical field of 25.8 T applied along the a-axis. All U moments have a net magnetic moment in the direction of the applied field, described by a ferromagnetic propagation vector qF = (0 0 0) and an antiferromagnetic component described by a propagation vector qAF = (0 0.30 1/2 ) due to a modulation in the direction perpendicular to the applied field. We conclude that this surprising noncollinear magnetic structure is due to a competition between the single-ion anisotropy trying to keep moments, similar to the ground state, along the [110]-type directions, Dzyaloshinskii-Moryia interaction forcing them to be perpendicular to each other and application of the external magnetic field attempting to align them along the field direction.
The Kondo insulator SmB6 is purported to develop into a robust topological insulator at low temperature. Yet there are several puzzling and unexplained physical properties of the insulating bulk. It has been proposed that bulk spin excitons may be the source of these anomalies and may also adversely affect the topologically-protected metallic surface states. Here, we report muon spin rotation measurements of SmB6 that show thermally-activated behavior for the temperature dependences of the transverse-field (TF) relaxation rate below 20 K and muon Knight shift below 5-6 K. Our data are consistent with the freezing out of a bulk low-energy (~ 1 meV) spin exciton concurrent with the appearance of metallic surface conductivity. Furthermore, our results support the idea that spin excitons play some role in the anomalous low-temperature bulk properties of SmB6.
Antiferromagnetic spintronics allows us to explore storing and processing information in magnetic crystals with vanishing magnetization. In this manuscript, we investigate magnetoresistance effects in antiferromagnetic CuMnAs upon switching into high-resistive states using electrical pulses. By employing magnetic field sweeps up to 14 T and magnetic field pulses up to $sim$ 60 T, we reveal hysteretic phenomena and changes in the magnetoresistance, as well as the resilience of the switching signal in CuMnAs to the high magnetic field. These properties of the switched state are discussed in the context of recent studies of antiferromagnetic textures in CuMnAs.
The compound SmB$_6$ is the best established realization of a topological Kondo insulator, in which a topological insulator state is obtained through Kondo coherence. Recent studies have found evidence that the surface of SmB$_6$ hosts ferromagnetic domains, creating an intrinsic platform for unidirectional ballistic transport at the domain boundaries. Here, surface-sensitive X-ray absorption (XAS) and bulk-sensitive resonant inelastic X-ray scattering (RIXS) spectra are measured at the Sm N$_{4,5}$-edge, and used to evaluate electronic symmetries, excitations and temperature dependence near the surface of cleaved samples. The XAS data show that the density of large-moment atomic multiplet states on a cleaved surface grows irreversibly over time, to a degree that likely exceeds a related change that has recently been observed in the surface 4f orbital occupation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا