Do you want to publish a course? Click here

Robust Surface States indicated by Magnetotransport in SmB6 Thin Films

123   0   0.0 ( 0 )
 Added by Jie Yong
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

SmB6 has been predicted and verified as a prototype of topological Kondo insulators (TKIs). Here we report longitudinal magnetoresistance and Hall coefficient measurements on co-sputtered nanocrystalline SmB6 films and try to find possible signatures of their topological properties. The magnetoresistance (MR) at 2 K is positive and linear (LPMR) at low field and becomes negative and quadratic at higher field. While the negative part is known from the reduction of the hybridization gap due to Zeeman splitting, the positive dependence is similar to what has been observed in other topological insulators (TI). We conclude that the LPMR is a characteristic feature of TI and is related to the linear dispersion near the Dirac cone. The Hall resistance shows a sign change around 50 K. It peaks and becomes nonlinear at around 10 K then decreases below 10 K. This indicates that carriers with opposite signs emerge below 50 K. Two films with different geometries (thickness and lateral dimension) show contrasting behavior below and above 50K, which proves the surface origin of the low temperature carriers in these films. The temperature dependence of magnetoresistance and the Hall data indicates that the surface states are likely non-trivial.



rate research

Read More

Samarium hexaboride is a candidate for the topological Kondo insulator state, in which Kondo coherence is predicted to give rise to an insulating gap spanned by topological surface states. Here we investigate the surface and bulk electronic properties of magnetically alloyed Sm1-xMxB6 (M=Ce, Eu), using angle-resolved photoemission spectroscopy (ARPES) and complementary characterization techniques. Remarkably, topologically nontrivial bulk and surface band structures are found to persist in highly modified samples with up to 30% Sm substitution, and to coexist with antiferromagnetism in the case of Eu doping. The results are interpreted in terms of a hierarchy of energy scales, in which surface state emergence is linked to the formation of a direct Kondo gap, while low temperature transport trends depend on the indirect gap.
The proximity effect at the interface between a topological insulator (TI) and a superconductor is predicted to give rise to chiral topological superconductivity and Majorana fermion excitations. In most TIs studied to date, however, the conducting bulk states have overwhelmed the transport properties and precluded the investigation of the interplay of the topological surface state and Cooper pairs. Here, we demonstrate the superconducting proximity effect in the surface state of SmB6 thin films which display bulk insulation at low temperatures. The Fermi velocity in the surface state deduced from the proximity effect is found to be as large as 10^5 m/s, in good agreement with the value obtained from a separate transport measurement. We show that high transparency between the TI and a superconductor is crucial for the proximity effect. The finding here opens the door to investigation of exotic quantum phenomena using all-thin-film multilayers with high-transparency interfaces.
Utilizing Corbino disc structures, we have examined the magnetic field response of resistivity for the surface states of SmB6 on different crystalline surfaces at low temperatures. Our results reveal a hysteretic behavior whose magnitude depends on the magnetic field sweep rate and temperature. Although this feature becomes smaller when the field sweep is slower, a complete elimination or saturation is not observed in our slowest sweep-rate measurements, which is much slower than a typical magnetotransport trace. These observations cannot be explained by quantum interference corrections such as weak anti-localization. Instead, they are consistent with behaviors of glassy surface magnetic ordering, whose magnetic origin is most likely from samarium oxide (Sm2O3) forming on the surface during exposure to ambient conditions.
Topological insulators are a class of materials with insulating bulk but protected conducting surfaces due to the combination of spin-orbit interactions and time-reversal symmetry. The surface states are topologically non-trivial and robust against non-magnetic backscattering, leading to interesting physics and potential quantum computing applications1, 2. Recently there has been a fast growing interest in samarium hexboride (SmB6), a Kondo insulator predicted to be the first example of a correlated topological insulator3, 4. Here we fabricated smooth thin films of nanocrystalline SmB6 films. Their transport behavior indeed shows that SmB6 is a bulk insulator with topological surface states. Upon decreasing the temperature, the resistivity r{ho} of Sm0.14B0.86 (SmB6) films display significant increase below 50 K due to hybridization gap formation, and it shows a saturation behavior below 10 K. The saturated resistance of our textured films is similar to that of the single crystals, suggesting that this conduction is from the surface and robust against grain boundary scatterings. Point contact spectroscopy (PCS) of the film using a superconducting tip displays both a Kondo Fano resonance and Andreev reflection, suggesting the existence of both an insulating Kondo lattice and metallic surface states.
We investigated the nature of transport and magnetic properties in SrIr0.5Ru0.5O3, (SIRO) which has characteristics intermediate between a correlated non-Fermi liquid state and an itinerant Fermi liquid state, by growing perovskite thin films on various substrates (SrTiO3 (001), (LaAlO3)0.3(Sr2TaAlO6)0.7 (001) and LaAlO3 (001)). We observed systematic variation of underlying substrate dependent metal-to-insulator transition temperatures at 80 K on SrTiO3, 90 K on (LaAlO3)0.3(Sr2TaAlO6)0.7 and 100 K on LaAlO3) in resistivity. Resistivity in the metallic region follows a T3/2 power law; whereas insulating nature at low T is due to the localization effect. Magnetoresistance (MR) measurement of SIRO on SrTiO3 (001) shows negative MR upto 25 K and positive MR above 25 K, with negative MR proportional to B1/2 and positive MR proportional to B2; consistent with the localized-to-normal transport crossover dynamics. Furthermore, observed spin glass like behavior of SIRO on SrTiO3 (001) in the localized regime, validates the hypothesis that (Anderson) localization favors glassy ordering. These remarkable features provide a promising approach for future applications and of fundamental interest in oxide thin films.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا