Do you want to publish a course? Click here

Incidence of $q$-statistics in rank distributions

188   0   0.0 ( 0 )
 Added by Alberto Robledo
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that size-rank distributions with power-law decay (often only over a limited extent) observed in a vast number of instances in a widespread family of systems obey Tsallis statistics. The theoretical framework for these distributions is analogous to that of a nonlinear iterated map near a tangent bifurcation for which the Lyapunov exponent is negligible or vanishes. The relevant statistical-mechanical expressions associated with these distributions are derived from a maximum entropy principle with the use of two different constraints, and the resulting duality of entropy indexes is seen to portray physically relevant information. While the value of the index $alpha $ fixes the distributions power-law exponent, that for the dual index $2-alpha $ ensures the extensivity of the deformed entropy.



rate research

Read More

We examine the relationship between two different types of ranked data, frequencies and magnitudes. We consider data that can be sorted out either way, through numbers of occurrences or size of the measures, as it is the case, say, of moon craters, earthquakes, billionaires, etc. We indicate that these two types of distributions are functional inverses of each other, and specify this link, first in terms of the assumed parent probability distribution that generates the data samples, and then in terms of an analog (deterministic) nonlinear iterated map that reproduces them. For the particular case of hyperbolic decay with rank the distributions are identical, that is, the classical Zipf plot, a pure power law. But their difference is largest when one displays logarithmic decay and its counterpart shows the inverse exponential decay, as it is the case of Benford law, or viceversa. For all intermediate decay rates generic differences appear not only between the power-law exponents for the midway rank decline but also for small and large rank. We extend the theoretical framework to include thermodynamic and statistical-mechanical concepts, such as entropies and configuration.
115 - Wu-Sheng Dai , Mi Xie 2013
In this paper, we give a general discussion on the calculation of the statistical distribution from a given operator relation of creation, annihilation, and number operators. Our result shows that as long as the relation between the number operator and the creation and annihilation operators can be expressed as $a^{dagger}b=Lambdaleft(Nright) $ or $N=Lambda^{-1} left( a^{dagger}bright)$, where $N$, $a^{dagger}$, and $b$ denote the number, creation, and annihilation operators, i.e., $N$ is a function of quadratic product of the creation and annihilation operators, the corresponding statistical distribution is the Gentile distribution, a statistical distribution in which the maximum occupation number is an arbitrary integer. As examples, we discuss the statistical distributions corresponding to various operator relations. In particular, besides Bose-Einstein and Fermi-Dirac cases, we discuss the statistical distributions for various schemes of intermediate statistics, especially various $q$-deformation schemes. Our result shows that the statistical distributions corresponding to various $q$-deformation schemes are various Gentile distributions with different maximum occupation numbers which are determined by the deformation parameter $q$. This result shows that the results given in much literature on the $q$-deformation distribution are inaccurate or incomplete.
This article is dedicated to the following class of problems. Start with an $Ntimes N$ Hermitian matrix randomly picked from a matrix ensemble - the reference matrix. Applying a rank-$t$ perturbation to it, with $t$ taking the values $1le t le N$, we study the difference between the spectra of the perturbed and the reference matrices as a function of $t$ and its dependence on the underlying universality class of the random matrix ensemble. We consider both, the weaker kind of perturbation which either permutes or randomizes $t$ diagonal elements and a stronger perturbation randomizing successively $t$ rows and columns. In the first case we derive universal expressions in the scaled parameter $tau=t/N$ for the expectation of the variance of the spectral shift functions, choosing as random-matrix ensembles Dysons three Gaussian ensembles. In the second case we find an additional dependence on the matrix size $N$.
68 - Loic Turban 2019
We study the random sequential adsorption of $k$-mers on the fully-connected lattice with $N=kn$ sites. The probability distribution $T_n(s,t)$ of the time $t$ needed to cover the lattice with $s$ $k$-mers is obtained using a generating function approach. In the low coverage scaling limit where $s,n,ttoinfty$ with $y=s/n^{1/2}={mathrm O}(1)$ the random variable $t-s$ follows a Poisson distribution with mean $ky^2/2$. In the intermediate coverage scaling limit, when both $s$ and $n-s$ are ${mathrm O}(n)$, the mean value and the variance of the covering time are growing as $n$ and the fluctuations are Gaussian. When full coverage is approached the scaling functions diverge, which is the signal of a new scaling behaviour. Indeed, when $u=n-s={mathrm O}(1)$, the mean value of the covering time grows as $n^k$ and the variance as $n^{2k}$, thus $t$ is strongly fluctuating and no longer self-averaging. In this scaling regime the fluctuations are governed, for each value of $k$, by a different extreme value distribution, indexed by $u$. Explicit results are obtained for monomers (generalized Gumbel distribution) and dimers.
We study the thermodynamics of a crystalline solid by applying intermediate statistics manifested by q-deformation. We based part of our study on both Einstein and Debye models, exploring primarily deformed thermal and electrical conductivities as a function of the deformed Debye specific heat. The results revealed that the q-deformation acts in two different ways but not necessarily as independent mechanisms. It acts as a factor of disorder or impurity, modifying the characteristics of a crystalline structure, which are phenomena described by q-bosons, and also as a manifestation of intermediate statistics, the B-anyons (or B-type systems). For the latter case, we have identified the Schottky effect, normally associated with high-Tc superconductors in the presence of rare-earth-ion impurities, and also the increasing of the specific heat of the solids beyond the Dulong-Petit limit at high temperature, usually related to anharmonicity of interatomic interactions. Alternatively, since in the q-bosons the statistics are in principle maintained the effect of the deformation acts more slowly due to a small change in the crystal lattice. On the other hand, B-anyons that belong to modified statistics are more sensitive to the deformation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا