No Arabic abstract
We study the random sequential adsorption of $k$-mers on the fully-connected lattice with $N=kn$ sites. The probability distribution $T_n(s,t)$ of the time $t$ needed to cover the lattice with $s$ $k$-mers is obtained using a generating function approach. In the low coverage scaling limit where $s,n,ttoinfty$ with $y=s/n^{1/2}={mathrm O}(1)$ the random variable $t-s$ follows a Poisson distribution with mean $ky^2/2$. In the intermediate coverage scaling limit, when both $s$ and $n-s$ are ${mathrm O}(n)$, the mean value and the variance of the covering time are growing as $n$ and the fluctuations are Gaussian. When full coverage is approached the scaling functions diverge, which is the signal of a new scaling behaviour. Indeed, when $u=n-s={mathrm O}(1)$, the mean value of the covering time grows as $n^k$ and the variance as $n^{2k}$, thus $t$ is strongly fluctuating and no longer self-averaging. In this scaling regime the fluctuations are governed, for each value of $k$, by a different extreme value distribution, indexed by $u$. Explicit results are obtained for monomers (generalized Gumbel distribution) and dimers.
The probability distribution of the number $s$ of distinct sites visited up to time $t$ by a random walk on the fully-connected lattice with $N$ sites is first obtained by solving the eigenvalue problem associated with the discrete master equation. Then, using generating function techniques, we compute the joint probability distribution of $s$ and $r$, where $r$ is the number of sites visited only once up to time $t$. Mean values, variances and covariance are deduced from the generating functions and their finite-size-scaling behaviour is studied. Introducing properly centered and scaled variables $u$ and $v$ for $r$ and $s$ and working in the scaling limit ($ttoinfty$, $Ntoinfty$ with $w=t/N$ fixed) the joint probability density of $u$ and $v$ is shown to be a bivariate Gaussian density. It follows that the fluctuations of $r$ and $s$ around their mean values in a finite-size system are Gaussian in the scaling limit. The same type of finite-size scaling is expected to hold on periodic lattices above the critical dimension $d_{rm c}=2$.
We consider a random walk on the fully-connected lattice with $N$ sites and study the time evolution of the number of distinct sites $s$ visited by the walker on a subset with $n$ sites. A record value $v$ is obtained for $s$ at a record time $t$ when the walker visits a site of the subset for the first time. The record time $t$ is a partial covering time when $v<n$ and a total covering time when $v=n$. The probability distributions for the number of records $s$, the record value $v$ and the record (covering) time $t$, involving $r$-Stirling numbers, are obtained using generating function techniques. The mean values, variances and skewnesses are deduced from the generating functions. In the scaling limit the probability distributions for $s$ and $v$ lead to the same Gaussian density. The fluctuations of the record time $t$ are also Gaussian at partial covering, when $n-v={mathrm O}(n)$. They are distributed according to the type-I Gumbel extreme-value distribution at total covering, when $v=n$. A discrete sequence of generalized Gumbel distributions, indexed by $n-v$, is obtained at almost total covering, when $n-v={mathrm O}(1)$. These generalized Gumbel distributions are crossing over to the Gaussian distribution when $n-v$ increases.
We report a surprising result, established by numerical simulations and analytical arguments for a one-dimensional lattice model of random sequential adsorption, that even an arbitrarily small imprecision in the lattice-site localization changes the convergence to jamming from fast, exponential, to slow, power-law, with, for some parameter values, a discontinuous jump in the jamming coverage value. This finding has implications for irreversible deposition on patterned substrates with pre-made landing sites for particle attachment. We also consider a general problem of the particle (depositing object) size not an exact multiple of the lattice spacing, and the lattice sites themselves imprecise, broadened into allowed-deposition intervals. Regions of exponential vs. power-law convergence to jamming are identified, and certain conclusions regarding the jamming coverage are argued for analytically and confirmed numerically.
In this work we extend recent study of the properties of the dense packing of superdisks, by Y. Jiao, F. H. Stillinger and S. Torquato, Phys. Rev. Lett. 100, 245504 (2008), to the jammed state formed by these objects in random sequential adsorption. The superdisks are two-dimensional shapes bound by the curves of the form |x|^(2p) + |y|^(2p) = 1, with p > 0. We use Monte Carlo simulations and theoretical arguments to establish that p = 1/2 is a special point at which the jamming density has a discontinuous derivative as a function of p. The existence of this point can be also argued for by geometrical arguments.
We consider a one-dimensional gas of $N$ charged particles confined by an external harmonic potential and interacting via the one-dimensional Coulomb potential. For this system we show that in equilibrium the charges settle, on an average, uniformly and symmetrically on a finite region centred around the origin. We study the statistics of the position of the rightmost particle $x_{max}$ and show that the limiting distribution describing its typical fluctuations is different from the Tracy-Widom distribution found in the one-dimensional log-gas. We also compute the large deviation functions which characterise the atypical fluctuations of $x_{max}$ far away from its mean value. In addition, we study the gap between the two rightmost particles as well as the index $N_+$, i.e., the number of particles on the positive semi-axis. We compute the limiting distributions associated to the typical fluctuations of these observables as well as the corresponding large deviation functions. We provide numerical supports to our analytical predictions. Part of these results were announced in a recent Letter, Phys. Rev. Lett. 119, 060601 (2017).